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ABSTRACT

& mpber of problens that arise in radar and sonar applications
can be regarded as parameter estimation problems, in which the desired
signal, £(t,a), is imbedded in non-white, Gaussian noise. It is de-
sired to estimafte the unimown, nonrandom perameter vector, a, from ob-
servations (contimous or sampled) of the received noisy signal over a
firdte time interval [0,T]. Here £(%t,a) is a known nonstochastic
function, and we shall consider the case when f(t,x) is linear in a.
In this case, ¢ is referred to as a linear regression vector.

We shall investigate the variance of the Jeast-Squares (LS) esti-
mator and of the so-called Gereralized-least-Squares (GLS) estimator
for a. Both are unbiased estimators for a.

¥hen the neise covariance function is carpletely known one may
construct a minimm variance unbiased estimator (MVUE) for @, and this
estimator is a member of the class of GLS estimators.

Our interest is in the -case when the noise covariance is not com-
pletely knovm, but may be regarded as a known function of a finite
number of unknown, nonrandcm parameters, B.

It is shown that when B contains any covariance parameters other

than the noise variance, there exists no MVUE for a.
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However, we shall exnibit a class of problems for which the MVIE
for a has a variance which is orders of magnituds smaller then that of
the LS estimator. In such a case it is of interest to find an estima-
‘tor which makes use of whatever covarience infom%icxx is available in
an attespt to approach the performance of the MVUE. ‘

It is shomn that we can significantly improve upon the LS estima-
tor by er;ploynlg 2 bootstrapping procedure to estimate ¢. In some
cases the bootstrapped estimate of a can be shown to be unbiased. In
any case, it is demonstrated via conputer simulation that the boot-
strapped estimate of g is capable of rec;ucing the variance of the IS
estimate by orders of magnitude. In fact, the mean squared estimation
error-using the bootstrapped estimator for a may be within a few per-
cént -of the variance of the MVUE, i.e., the variance the MVUE would
‘have 1f B were known a-priori.

The bootstrapping procedure consists of using the LS estimate of
a to provide an initial estimate of the regression vector from which
an initial estimate of the unknown covariance parameters is con-
structed.

Two procedures are outlined to accomplish the estimation of 8.

The first approach is based upon an application of the theory of

locally best unbiased estimation. The second approach is herein termed

the "inverse-covariance-function" technique. Because of its simplic-

ity, the latter approach is employed in the simulations.
v
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Regardless of the marmer in which the covariance parameters are
estimated, these estimates are used Yo construct the GLS-estimator for
a. This is the first iteration of the bootstrapping procedure.

The GLS estimate of uis then used to re-estimate the unlmown co-

variance parameters, and then to re-estimate the regression parameters.

The process uses only the one available record of data, and may
be repeated ad nauseém. However, dramatic results were obtained after
only two iterations of the bootstrapping procedure.
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Chapter 1
INTRODUCTION

1.1 Problems and (bjectives
A& rmmber of problems that arise in radar ard somar applications
can be regarded as parameter estimation problems in which the data

r(t)=f(t,5) + e(t) : . @A)

are received (either contimuously or sampled) over a finite time in-
terval [0,7). Here the desired signal, f(t,a) is a known function of
the unknown n-dimensional parameter vector, a, and e(t) is observation
noise. We shall be interested in the case where a Is-a nonrandom
parzneter vector and e(t) is a sample function from a contimous-in-
mean, zero mean, Gaussian randam process. We shall restrict the dis-
cussion to linear parametric dependence. That is,
n

£(t,a) =1Z a8, (t) ' (1-2)
vihere {gi(t) :i=1,...,n} are lknown nonstochastic time functions.

It is well known that with the above assumptions, the minimum
variance unbiased estimator (MVUE) of the regression parameter vector,
o, is a function of the co;/ariance properties of the noise process,

In this dissertation, we consider the problem of estimating o
when the noise covariance (or equivalently the spectrum in the case of

a stationary random process) is not completely kmown.
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The method of approach.is to treat the noise covariance function
as a known function of a finite number of unknown, nonrandom para-
rifete;*s. ‘
e main cbjectives of this work are: B

1) to provide some Insight into cases where dramatic

improvement over the performance of the simpie least-

1', which makes use of no knowledge

squares (IS) estimate
of the nolse covariance, is theoretically possibié .

2) to propose a reasonable estimation procedure which
is capable of offering significant improvement over
the performance of the LS estimator.

3) to investigate the performance of this procedure
analytically and experimentally via several examples
which demonstrate its utility.

1.2 Sumary of Previous Work

The subject of optimm* estimation of f(t,o) when the noise

statistics are completely known has been investigated by many authors.

Rao's book [1] is an excellent reference on the subject. Grenander

+See Section 2.2 for the definition of the LS estimate.

% .
In the sequel optimum always refers to minimum mean squared error.

1]




and Rosenblatt [2] present the material more from the point of view
required in the treatment of random processes than does Rao. Parzen
[3, 4] uses the tools of Hilbert space to provide an approach which
is applicable to both the continuous-time and sampled data cases.
Cramer [5] and Wilks [6] are good references for an understanding of
the basic mathematical statistics required in the study of parameter
estimation problems. Swerling [7] derives useful expressions for
evaluating the covariance matrix of vector parameter estimates far a
wide class of probiens. In another paper [8] he discusses various
approaches to the parameter estimation problem, including the case in
which the unknown parameters are regarded as having a known a-priori
probability distribution.

On the subject of power spectrum and covariance funetion estima-
tion the classical references are Blackman and Tukey [9] and Grenander
and Rosenblatt [2]. A recent paper by Parzen [10] sunmarizes much of
the present -state of knowledge on this subject. All of these works
are concerned with estimation of the entire structure of the spectrum
or covariance function, however, and are not applicable to the case
in which the covariance or spectrum is known but for a finite number
of unkmown parameters.

Two papers concerned with the parametric approach to power spec-
trum estimation are those by Levin [11] and Hofstetter [12]. Levin's

MR aihvas MPred Kares
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results are approximate results which hold under a wide variety of
conditions. Unfortunately, however, the effects of the approximation
have not been quantitatively evaluated. Furthermore, for the examples
presented in this dissertation, where the optimum estimator is signi-
ficantly better than the LS estimator, it can be shown that Levin's
approximations are invalid. AAnd while Hofstetter's approach is exact,

he is unable fo-obtain any analytic results except for the case of

estimating a spectral amplitude scale factor. The estimation of a

spectral scale factor is not pertinent to the problem of estimating
linear regression parameters, which we are concerned with here. .
A recent paper by Rao [13] considers the linear regression
parameter Vestimation problem when the noise covariance is unknown, and
an ést:[mate of it 1s incorporated into the regression parameter esti-
mate. Here the noise covariance is regarded as completely unknovm,
and estimates are constructed for each element of the noise covariance
matrix. Rao's assumptions require, however, that a number of in-
dependent realizations of the same random process be simultaneously
obtained (e.g., via multiple sensors). (These separate realizations
could be correlated if their correlation is known completely.) In
fact, the number of realizations obtained must be at least as great as
the number of time samples available in each realization. This
follows from the conditions for the existence of the Wishart distribu-

tion which is central to his results. In his paper, Rao uses the
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available independent realizations in order to construct the covar-
iance estimates.

Up to this point, references have been cited which fall into
one of three categories: .

1) Signal parameter estimation with known noise covariance

2) Noise spectrum or covardiance estimation (parametric and

nonparametric)

3) Regression parameter estimation using an estimated (non-

parametric) noise covariance matrix.

The parametric covariance approach to be adopted here really
amounts to a particular kind of joint parameter estimation problem.
As such, it is logleal to ask if there exists some general theory
which is capable of providing optimm estimators of the desired para-
meters.

The results of Barankin [14] provide the desired theory when
one is willing to accept what are termed "locally best" unbiased

estimates of the desired parameters.* In some cases only locally

1ﬁe are not really interested in locally best estimates of a. How-
ever, an application of Barankin's theory will reveal that under
certain conditions (to be stated) no MVUE of a.exists. We will then
abandon the requirement of bestness and hope to find an estimate for
a whose performance is close to that of the MVUE when the latter

exists.
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best unblased estimates will exist. A necessary and sufficient con-
dition for the existence of locally best and for uniformly best
(i.e., MVUE) unbiased estimates was stated by Rao [1]. Barankin gives
a different necessary and sufficient condition for the existence of a
locally best unbiased estimate. Swerling [15] restates Barankin's
results in a form more easily applied. Since neither of these papers
has received much attention, and because of the author's own interest
in this important subject, much of the development will be elaborated
upon in this dissertation.

In dddition to the above-mentioned references, there are a host of
papers {16-33] in the fields of cybernetics and adaptive control which
the author has found useful and stimulating.

1.3 Outline cof Dissertation and Summary of New Results

Chapter II begins with an investigation of the simple LS estima-
tion procedure and proceeds through a development of the generalized-
least-squares (GLS) estimator*. The optimum estimator, when the noise

covariance is known, is a memoer of the class of GLS estimators. For-

*
The GLS estimator is defined in Section 2.3.

Tt
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nulas are given for the covariance matrix of the parameter estimates..
The results are given for the continuous-time and sampled data cases.
These results are not new, but their development constitutes a con~
venient introduction to the subject and symbology which follow them.
Using these tools, two examples are provided in which dramatic im-
provement over the performance of the LS estimator is theoretically
possible. These examples are investigated in greater depth in the
chapters which follow.
In Chapter III the Cramer-Rao bounds for joint unbiased éstimates
. of ‘the regression and covariance parameters are derived for the first
example mentioned above. 1In this example the noise process is a
stationary first-order autoregressive scheme, It is shown that the
bound on the regression parameter estimate is not increased by the
‘presence of the unknown noise covariance parameters. Since this -bound
cannot be achieved except under certain limiting conditions, an in-
vestigation into the Barankin bound, which is always achievable, is
made. The Barankin bound analysis is quite general and is not re-
stricted to the case of autoregressive noise. (An exposition of
Barankin's theory is given in Appendix II.) It is shown that no uni-
formly best (i.e., MVUE) estimator for the regression parameter exists
when the noise covariance (normalized) has unknown parameteérs. A
technique employing barankin's theory for the estimation of‘pertinent

. covariance parameters is suggested.
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- tions. on the data, making analytic results for bias and mean square

‘d;a\felopirxg the proposed procedure, a comparison is made to the joint

<
v

Chapter IV is-concermed with the Synthesis: and analysis of the s
aesj.r?igd«_est;lina@ggq procedure. 'Ihe‘ procecure involves nonlinear opera-

error calculations difficult to obtalr.. Some analytic results regard-
ing ‘the bias of the-estimator are presentad. A detailed investigation
mtO' the ‘perf‘omaj;ce. of the procedure- is made via a digital computer

similation of the two.examples mentioned earlier. In the course of

um likelihood estimator.

v

The main result is the demqnstr'atipn','(via simulation) that signi-

1

ficant inprévem_ani; over the IS estiniator performance -can be obtained
in some :cases,;by thi use of the proposed procedure. The procedure
aqﬁ:uall&, amounts to: an unsupervised learning or "bootstrapping" tech-
h;é;ue:in _whi’éh the LS es;t:imate of the regression parameter is used to
es‘cima{:e the noise .covariance .parameters. The estimated covariance
pa.’f'amete;'s» are then used to revise the regression estimate making use
of the GLS estimator. The process can be continued ad-nauseam.

However, the examples studied indicate that after only two revisions

bf the LS regression estimate, the mean squared error may be nearly

equal to the variance of the MVUE.

This result funs counter to a remark made by Eicker [34] that a l’
useful estimate of the covariance matrix , or of the functions. of it 1
which are pertinént to estimating the regression parameters, cannot be

constructed from a single finite sequence of observations. °
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‘Chapter 2.
LINEAR ESTIMATION

2.1 Introduction
By a linear estimator, §_, is meant a measurable function of the

observables, R, which is linear in the observables. The interest in
1linear estimators is due largely to the ease with which they can be

synthesized and also to the availability ‘of analytic tools tc investi-

.gate their performance. Turthermore, for the linear regression model

of interest here, the MVIE of o is a linear estimator.

In this chapter the LS and GLS estimators of &, which are linear,
unbiased estimators of a, will be investigated. The data will bé as-
sumed to cohsist of time samples; and vector-matrix notation will be
employed for convenience. The generalizations required for treatment

of the continubus-time problem will also be given.*

*In general the results for time sampled problems will depend upon
how the time samples are distributed on the observation interval.
This dependence will not be explicitly denoted in the sequel,
however. '

It is well to observe that if the time samples .are constrained to
be equispaced on an observation interval of fixed iength, the
estimation accuracy is not necessarily monotonically improved as

the number of samples: is increased, It can be shown, however,

[35] that the optimum linear estimate is obtained for dense sampling
in the interval. (Also, of course, a set. of samples which con-
tains another set will not lead to a worse estimate,)

Qv e
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2.2 Least-Squares Estimation. ] )
_ The problem of interest may now be stated as. the estimation of a

‘when the data 1s of the form

R=0Ga+e B (2-1)

Here R is an Nx1 colum vector consisting of the N time samples of
data on the interval [0,T}. G is a known Nxn matrix whose elements

are: glven by
G = (g1 (2-2)
L By T y(t) 5 e, N 5 3=,25.00n (2-3)
a 1s an nx1 column vector consisting of the unknown regression- para-
,metérfs , and- e is an Nx1 colum vector of zero mean Gaussian noiseé
samples. ‘ )
The LS estimafor, %g» is that function of the observables which

minimizes the sum of the squares of the residuals. That is, %g
minimizes the quadratic form

@ =¥ > 2 (2-4)
Aa) = y ' {r - 0.8 -4
N 23" i=1ii*~’§
u=1
Hence,
QY =r=o=N p..%“ g, lg. 3 3=1,2 n
J= =5 w=l
(2-5)
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The system of equations above is summarized by the equation
GR =63 (2-6)
which yields the familiar result®
yo=EER (2-7)
It is easy to see that & . is an urbiased estimate of a. That
is, Jet a belong to the parameter set A. Then**
El@l=aVaeh (2-8)
The covaridnce matrix of any unbiased estimate of a, say a,
{also termed the estimator dispersion matrix) is an mmn matrix of

elements, {di 33 i,j = 1,...,n}~wh1ch we will denote by

D) = [4;,] = El@ - o) (@- &)") (2-9)
For the LS. estimate we have
D(g, ) = (67617 6" are’e1™ (2-10)

where ¢ is the noise covariance matrix,

* -
The existence of [GTG] 1 is assumed. This requires, of course,
that N 2 n,

*%
The notation E[...] denotes ensemble expectation and will be used

interchangeably with the symbol [...].
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(2-11)

: mservethat;gz‘sislinearinthedata axﬂtnatitjnnoway

1nvolves lamledge of the noise covariance matrix for its construc-

- tion,

‘I'o derive the corre«pondirg formlas for the contimxoua-tjme

case we rzay pmeeed by ‘making use of the Kar‘mnen-Loeve expansion of

“the \rar_xdan prooes§ e(t;) . 'Then for a positive definite -covariance

furiction, #(t,s):
- #(t,5) =Ele(t)e(5)]

D
i) = fakomm a
o . 0 . : 3

_f[ B (00, (6) at = &,
0 ,
we have

r, = r(t)wk(ﬁ)' at

Oz

N
BT f g, (B)¥, (£) dt
- g1

T
e = [ ettrye) at
0 .

(2-12)

(2-13)

(2-14)

(2-15)
(2-16)

(2-17)
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vhere the above equations hold for k = 1,2,....

Hence, -we have

r, 82 g, te s k=1,2,... (2-18)
i=)

or in vector-matrix form
R=Ga+e " (2-19):
Equation (2-19) is exactly the same as Equation (2-1), except
that in (2-19) the dimensions of the vectors and matrices are infinite

with respect to the k index. The solution for %‘s obtained in Equa-

tion (2-7), therefore, still holds with the following modifications,
The nxn matrix GG has elements given by

(@), = }: B = E f Biiag i (D¥(8)

k,m=1
T o
-f (Z gikwk(t)) (Z Bz (t)) d
0 k=1 ’ ’

= f gy (6) gy(t) bt 5 1,5 = 1,2,..05n (2-20)

Similarly, the nxl vector GTg_ has elements given by

T
.
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Q @R, =Y epn = [ o® x® 6 5 5= 12,00 (22D)
L & ] .

For the estimator -dispersion matrix, Equation (2-1C) still holds,
where (2-20) is used tc obtain the matrix GTG,. and where the elements

of the matrix G'¢ G are found froi

@ G:)ij’ B E Biy bkm &y 3 12d = L2500 (2-22)
k,m=1
with- ‘
. o
0

L Substituting (2-23) into (2-22). we obtain the desired expression.

: T
(G 6),, = Jf g6y 6 (£,9) gy(s) dt ds 5 1,§=1,2,...,n (2-24)
‘0
2.3 Generalized Least Squares Estimation
In the preceding section, the LS estimator for o was found by

minimizing the sum of the squares. of the residuals, The GLS estimator
is -obtained by minimizing the more general quadratic form

N n n
Q"(gx = 2 : ‘{Pu - E aigiu} { r\) - Z aigi_v'} riuv (2-25)
ATV i=1 i=1
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where n,y & the elements of an arbitrary (real) positive-definite
matrix, n. Usually, n is taken to be symmetric. It is apparent that
when n i1s chosen to be the identity matrix, the LS estimator will

result. It will be seen shortly thati 8 ¢ 1s an unbiased estimatar of
a and 1s linear 1n the data.

For Gaussian noise with covariance matrix ¢, if n is taken to be

-1

¢ ~, then is the MVIE of a. This can be shown in a variety of

%Ls
ways [1, 21.
For the present we shall regard n as any real, symmetric, pos-

itive-definite matrix and give the form of & .
Proceeding formally with differentiation as in Equation (2-5) the

following matrix equation results.

T2 = of ' ,
[G™G) a5 = GMR (2-26)
Hence,
a0 T =1 T
Seg = [G'nGL "GMR (2-27).

Observe that @ . is linear in R and is an unbiased estimate of @, no

matter what matrix, n, is used. The dispersion matrix of QGLS is
easily calculated.
D(Eg) = 16616 nenG (G nG) ™ (2-28)

In the case wheren = dfl this reduces to the well-known result

ESIR
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D@o ) =[G Q'Iélf 1 | | (2-29)

where the subscript on & denotes the fact that this is the MVUE of

" @ Note from (2-27), with n = ¢ %, the explicit dependence of & on

‘the (normalized)- noise covariance matrix.

'Ihe formulas for the continuous time case, correspbnding to
Bquations (2-20), (2-21) and (2-24), for arbitrary n require special
treatmént: When the Sanpled-dat_:a_ fom; of n is the inverse of a
covariance matrix resulting from the sampled form of a covariance
furietion, $(t,t"), the results of Swerling [7] may be used to find
the formulas in the limit as the ‘samples become densé in the observa-
1';10n~ interval. We will be interested in the dispersion matrix of

'§e when the sampling is dense. In‘ this case
@), = [o ) ) a5 4,021,200 (230)
-0

where h j‘(t) is the solution to the integral equation

T
' hj(t) #(t,s) dt. = gj(S) 3 s e [0,T7 55 =1,2,...,n (2-31)

This result‘i—‘s valid whenever {_\hj(t) 3 J = 1,2,.. .,n} exist as a
solution to the above integral equation and whenever certain other
conditions outlined in Swerling [7] and [15] are satisfied.

The estimator dispersicn matrix for §° is thén found using

335 o~ N L
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Equation (2-29). ,
With the preceding results at our disposal, we are prepared te
campare the performance of the LS-estimator with that of the MVIE.

b U3

2.4 Performance Comparison

The purpose of this section 1s to disclose a class of problems
in which "dramatic improvement" oveér the performance of the LS esti-
mator wculd be possible if the noise -covariance were known. By
dramatic here, we mean at least an order of magnitude reduction in
the mean square -estimation error. -

This investigation 1s motivated in two ways. Firstly, the com-
parison provides a measure of the sensitivity of the optimum estimator
to imprecise knowledge of the noise covariance. Highly sensitive
cases will exhibit dramatic performance differences. Secondly, since
a simulation is employed to investigate the performance of the esti-
mation procedure suggested in Chapter-IV, it is desirable to simulate
examples where the improvement, if any, is not likely to be obscured
by simulation innaccuracies. The results of this section provide such
exanples. l

The following treatment will be concerned with the case when a
consists of only a single parameter, a. The formulas presented in the
previous sections can be used for the more general vector parameter

case in an obvious manner. Also, the continuous-time formulas will
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" be enphasized since their ‘uae avolds the need for matrix ihversions
i . and facilitates hand caleulations. ‘ ' |
A 'iheref‘bfg, for f:he variance of the IS estimator we have from
(2-10), (2-20) and: (2-24)

H : ,T.“
S Jf &) 4t gls) at as
Vo= o .. — , (2-32)
I 2
f g*(t) at

0
_and thé minimit variance possible is

o [. T: | R -1 T -1
V= [ f H(E) ¢ (t,s) h(s) dt ds] - [ f h(t) g(t) d,t] (2-33)
. -0 -0 &

¢w‘h'ere h(t) 1s the solution t}o
T / .
f’h(t) ¢ (t,s) dat = g(s) ; se[0,T] (2-34)
0 2

[o]
We seek examples for which V is much less than VLS' Oné such
exanple is the .following: ‘

] Example 1.
g(t) =fcos uw t ; te[0,T] (2-35)
0 otherwise

¢ (t-s) = o? exp[-B |t-s|]* ‘ (2-36)

* ) )
Note that the noise process is stationary in this example. This will
also be the case for Example 2, which follows..
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where the parameters w and B are chosen in accordance with the con-
dition that for -some non-negative integer, k,

- (ke + D
0B Teclaw T = =z 2T

(2-37)

where T'is the length of the cbservation interval. If this is dane,
then for dense sampling we obtain

. % L
g.’ =BT ‘2’ — =BT (2-38)
LS (on) + 28T

To derive the above reésults we apply Equations (2-32) through (2-34).
T

o ff (cosw t) (cosw s) exp(-8 |[t-s|) dat ds

__0 , o -
Vs = T — (2-39)

fcosw‘tdt:
. o .
"0

The calculation of the integrals above results in

Vg = 82 {(uD L + (8 Va0 + (stn 20,1 /20 M7
{(8 T/2) [1'+ (stn 20 T)/20 1] + (sin® u T)/2
+{exp(-B8 TY1[(B T/on)zcoson - (B T/w T)sinw T]
[+ (87D - @D+ (8 /umi (2-k0)

[+
To calculate V we require the solution for h(t) in Equation (2-34)

M .
R AT G s SR
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. This solution is given in Swerling [15] when ¢ (t-:',s) is of the form

- -expms’é‘ed‘ in,(2-36) and g(t) is twice differentiable with réspect to

t for t within. the observation interval. _ When g(t) is given by (2-35)
the nesult 1s

h(t) = ——tB (cosw 'c)[l + (w T/8 T) ]+ 68(t) +

v

[cosw T - (w T)(sinw T)/B T} 5(t-T\} (2-41)

" where-8(.) is the Dirac:delta function.

" Using (2-41) in (2-33), we obtain for ¥

, 2
$ — ‘_ 8¢ AT _ (2-12)
w : W
[B°T +BT]+11[1+cos wT]+[BT ]sin2wT

BT

¥

It can be Verified that the quantity 9/V, ¢ has local minima
whenmwdT is equal to an odd multiple ‘of‘ n/2. If on and B T satisfy
relation (2-37), the approximate result in (2-38) follows. Note that

the dramatic improvement afforded by the optimum estimator, as

‘méasured by ﬁ/vLs, depends on the ratio of the signal ‘bandwidth to the

noise bandwidth not on the signal-to-noise power ratio per se

While the above analysis applies strictly for dense sampling, it
provides a good indiqat;ion of the behavior of the time-sampled version
of the pfbblem if the sampling rate is sufficiently high. This will

be indicated by numerical results. later.
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Considerable insight can be gained by looking at the above ex-
ample fram the frequency domain point of view. To this end we shall
define the signal power spectrum, Sg(w), as
) s, = [#Fe®}1* = | § et)exp(-Jut) at|® (2-43)
(-]
where .3‘{ } denotes the Fourier transform operation. The noise
power spectrum will be defined in the usual fashion by ,
Sg(m) =& {¢ (t-s)} (2-4l)

From this it follows that for Example 1

. . 4 T 2{/sin X 2 sin X, 2 coson[coson - cosuT}
bg(m) = (—2-) T) +{ - X, ) + —~ (2-U5)

172
S (w) = B (2-46)
e '32 + wZ
where
(w - mo) T .
X, = ——y (2-47)
(w+-w )T .
xz = —2.0—_ (2_’48)

Now it can be observed that when “-’GT is fixed at an odd multiple
of m/2 the cress-product tem (i.e.; the last tem) in Sg(w) vanishes.
This permits some ‘separation betwéen the main régions of concentration

of signal and noise power.
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-

Figure (2-1) depicts the distribution of signal and noise power
“in the frequency- domain when the parameters are chosen so that dra-_

' mitié improvement is possible. In this illustration w T-equals 51/2.

(9he spectra are symmetric abput; -zero frequerncy and wo.)

Figure 2-1. Power Spectra for Example 1.

Flgure: (2-1) suggests that the dual problem, which-obtains when

Pl

tge’ 'ce“r;terl-ﬁ'eqmncy locations of the two spectra in Example 1 are

" interchanged; might alsc afford an example where dramatic Amprovement

over the performance of the LS estimator is possible, This;, in fact,
is true.

N
s




The specific example 1s

Exaple 2.
g(t) %gl 3 te o (2-49)
{0 otherviise 7
¢ (5-5) = o” exp(-8 [t-s])cos[v_(t-)] (2-50)

When the parameters are chosen so that for some non-negative:
integer, k,.
0<B T<<l<i T = (2% + )n (2-51)

then corresponding to Equation (2-38) we have

w Tlexp(-w T) + 1] (
. (B T) c ¥ ] BT/2  (2-52)

Tis T\ 2 JPleRte D ¥ I 2Eete D
where the last approximation holds when w T is >> 1 (i.e., k1\.
The derivation of this result follows.

For V, . we have

LS
T 2 T
Vi = ;—2 ff ¢ (t-s) at a8 = & [ exp(-8[t—s|)cos[w (t-s)1dt ds
0 T 0 C .
2 » (w2 - (87)2
=% 5 s~ |8T + = 5 3 "[1 ~ exp(~BT) -cosw. T]
[(w D) + (B (w, D)+ (BT) ¢
_2exp(-BT) .. (4 T) (BT)sinw T (2-53)
(oD + (D2 © ¢ S

»‘g:‘.;"q

- Um&mu&
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To ca_culateﬁitis émsarytoso‘lvetheintﬁgraleqmtim

T .
f R( t)exp(—B h—s')ocs[u (t—s)] 6t = 1 ; sef0,7T (2-5%)
o -

for h(t). The detaiis for cbtaining this solution are presented in

Appendix I. The reésult is-
h(E) = X {exp(-zt) + expmc(‘.;-i')]} + ¥ + K, 18(t) + 8(+-1)) (2-55)

where

W=uleg? ‘ (2-56)
B —-. =X u: ’
Ko' =3 - ’ (2-51)
_ 80710k + B) + ( - R)exp(-4m)]
K = kY287 ' (2-58)
¥ = X f(k 4+ B) — (k = 8)exp(=2F) ' (2-59)
=2 Lk [Gc+8) (k= “B)exp{-&T) ~

Applying Equation (2-33) we cbtain

) 2% 1
8 = [_ (1exp(xT)] + £ T 2\2] (2-60)

In this example, local minira of ‘f;'/'srl'S oceur s&zerz‘upc‘i‘ is equal to
an add integral multiple .of 7. ‘The power spectra are displayed in
Rigure. (2—2) y:ith-mc'l"egual to 3x. Tre formilas for the spectra are:

(2-51)

o il M St
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Figure 2-2. Power Spectra for Example 2.

The above examples suggest that a class of problems in which G/VLs is
very smll (i.e., <<1) is hcharact:erjzed by the property that the noise
dandwidth is very small relative to the signal bandwidth, and that the
location of the noise "spike™ is such that a linear welghting filter
cperating on the available data can de-emphasizs the nolse energy

25
2 8 [+ :
S {v) =07 ¢{- + — - - {2-62)
e ‘{82‘1— (w - m)2 Bz + (0 + u)z} )
c c
x, = % (2-63)
— w
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without unduly corrupting the useful signal. It would also:appear
that this concept could be extended to noise spectra which contain
several spikes‘." |

In fact, these statements can be rigorously established whenever
the opt;iuun Hnear ubiased estiimtor for a can be represented by

(o]

T
i = f 8(t) r(t) at - (2-61)
0 - .

where #(t) ‘derotes the optimm weight function.
‘By applying the variational calculus o minimize the variarce of
" ,
o= f w(t) o(t) at (2-65)
o R -

subject to the unbiasedness constraint that

T
_[ w(t) g(t) at = 1 (2-66)
0

it is found [36] that W(t) must satisfy the integral equation

T
fﬂ(t) é (t,s) dt = i g(s) ; s {0,T] (2-67)
O:

~ where ¥ 1s the mintmum variance dbtained, and is given by




27

T }
V= ff %) ¢ (£,5) %s) at as (2-68)

0
(Multiply both sides of (2-67) by W(t) and apply (2-66).)

But ¥ is also given by Fquations (2-33) and (2-34), since the
optimum estimator is unique with probability one [1,.6]. We then have
the association between W(t) and h(t) given by

#t) = ¥ nee). (2-69)
Hence, except for a constant, the optimum weight function is equal to
the solution, h(t), of Equation (2-34). 7

Now for any w(t) in (2-65) and for stationary nc?i'se, the variance
of the corresponding estimate, &, is

T

V(o) = ff w(t) ¢ (t-s) w(s) dtds . (2-70)
0 )

And if we define k(t) by
k(t) = {w(t) t € [0,T] ] (2-T1)
0 otherwise

then making use of the convolution theorem [37] and Parseval's formula

we have

V@ =2 [ KWl s, (2-72)

e N e e e e e e [ P
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where K(w) is the Fourier transform of k(t). PFurthermore, the con-

straint equation imay be rewritten as
-
1 »*
= [ k@ @ aw=1 (2-73)
-0 R

where G(w) is the Fourier transform of g(t).
We now see that W(t) is such that the integral in (2-72) is
minimized subject to the constraiht in (2-73). It is in this fashion

that ﬁ(t) de-emphasizes the noise energy while attempting to preserve

“the information in the desired signal.

Another point of view which is useful for investigating condi-
tions for dramatic improvement is obtained by employing the Karhunen-
Loéve expansion of the noise process. This point of view does not
require that the noise process be staticnary.

Suppose, in accordance with Equations (2-12) through (2-17), we
ﬁndwthe eigenfunctions gtpk(t)t;l and corresponding eigenvalues
{A“»zkﬂ associated with the covariance function, ¢(t,s). Then the
power in the kth noise expansion coefficient, € is A, , ad: the

t

. 2
power in the k h signal expansion coefficient, & is i Separation
T

of the signal and noise energy distribution occurs if, for every k,

2.
B A
T

-the product is equal to zero. While total separation cannot




normally be expected, it may be sufficient, in order to obtain

2 -2 2
A (g ) (g ).
ng k camax i %— . Akz whenever either —;k— or

8/VLS«1’ to have
lk is large.

For instance, Van Trees [53] glves the eigenfunctions and
eigenvalues for Example 1 (except that the observation interval is
taken symmetric about zero for convenience). Hence, for Example 1
with t = [-T/2, T/2] we have

2
A =B k=10, (2-74)
B+ by

\pk(t) = —“-1,.5 - 317z °0S bkt 3 k odd (2-75).

J_ sin ka

Tl + ——

‘ 5, T
g, (t) = ‘[—.2- — sinb t ; k even (2-76)
k sin b, 7] /2 k” 2
VT b - — T“ :
, k

when the bk are the solutions to the transcendental equation
b B
[tan(ka/Z) + B—] [tan(ka/2) - BI
If the values of bk are arranged in increasing order and on and
BT are chosen in accordance with (2-37) it is found that

kaz(k-l)}"—;lnu (2-78)

]= o (2-17)
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Mecarmhile we have

T/2
g = Ak f cosmot cos bk.t dat
S T2
_ fr\{sinlly, - b)T/2Y  sin{(w, + b, )T/2]
- Ak(?) ‘(wo - bk)T/Z + (mo + bk)T/z . , k odd (2-79)
/2
8 = Ak J- cosmo’c sin bkt dt.
~T/2

cosl(p, - 0 )T/2]  cosl(b, + w )T/2]

- 'Ak(T/ 2): BCAETN 7 R AR ""k even (2-80)
‘where _
V2. . :
| ' sy 6
o iy
k
Ak = V_ (2-81)
2<
- - ; k even
) cosb, T 1/2
T L - K
| : bkfI'

Using the above resuits, it is easily verified that, indeed,

2
Ze A
T

2
(g,)
< maxj—m— Ak for all k.
The above remarks are intended to serve as an intuitive guide to

a class of problems where one might expect to be able to construct an




estimator which is significantly better than the LS estimator. There
is, in fact, a clese analogy between the class of problems mentioned
above and problems related. to spatial filtering of directional noise
sources in radar and sonar applications [21]. In any case, Equations
(2-10) and (2-29) may be used to investigate other specific examples.
It is well to point out that for large observation intervals,
the class of problems in which the LS estimator can be significantly
improved upon is quite small {2, 38). Even Examples 1 and 2 above are
such. that V/V, ¢ approaches unity as Tx=. On the other hand, this in-
dicates that many problems in which- D(é\z.o ) = D(&s) for large T, might

be more interesting, with regard to sensitivity, when'T is small,
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.Chapter 3
BOUNDS FOR THE .JCINT PARAMETER ESTIMATION PROBIEM

3.1 Introduction

Up until now we have been concerned with the performance of the
LS estimatar for a as campared with that of the MVUE, which requires
campiete knowledge of the narmalized covariance function of the noise
for its. construction. We would like to know the answer to the
Tollowing question: What is the limit on the accuracy -of unbiased es-
timates of a when the normalized covariance function, itself, has un-
known parameters? More precisely, what is the greatest lower bound
on the vardiance of unbiased estimates of a in the presence of unknown
covarianceé paraneters? We are also interested in the form of the es-
timator which achiéves this bound. This, theén, is what we:will refer
to as the joint parameter estimation problem.

Hence, consider the family of Gaussian probability density func—
tions {p(R;y) : YeT} defined with respect to Lebesgué measure over
BEuclidean N-space, E‘N’ where '

Y=paf (3-1)
denotes the (min)-dimensional parameter vector composed of the m—dimen-
sional covariance parameter vector, B, and the n-dimensional regres-
sion parameter vector, a; which belong to same parallelopiped, T, in
E n
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- The Crarsr-Rao (C-R) bound for the joint parameter estimation
prcblem furnishes a lower bound, not only for the variance of unbiased:
) ’gstimabes of c_x_,‘ but also for the mean squared error of estimates for
‘ the ‘covariance parameters. These bounds, however, are in genzral not
the greatest lower bounds, and unless they are, they’are not attain-
able by any estimator. MNonetheless, the ease with which the C-R
‘bound can be calculated 1n many cases, renders it an important bound.
/ We will calculate the C-R bound for the joint barareter -estima-
tion problem 1n Example 1, assuming that unblased estimates for all
thé parameters exist. (An unbiased estimate of the regression param-
eter always exists; namely the IS estimator. It can also be shown
that. an irblased éstimate of o® exists. The investigation.of whether
or not unblased estimates of the parameters in the porma]ized covar-
ianéé function exist when the regression parameter is unknown, is
beyond the scope of this work. It is noted, however, that the cal-
culations for the C-R bound which follow can be easily modified to
include the effect of a known bias in estimating these parameters.)

The calculation of the C-R bound for Example 1 will reveal that

* )
the C-R-efficient estimates of the regression parameters are uncor-

*
This terminology refers to those estimates, if they exist, which
have the dispersion matrix given by 'the C-R bound.
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;'ela‘ped with those of the covariance parameters. Hence, the C-R-
efficient regression parameter estimate is unaffected by the lack of
knowledge of the covariance parameters. (This conclusion remains
valid even when the covariance parameters possess no unbiased esti-
mates.) This is certainly an unsatisfactory bound in view of the fact
that the optimm estimator of a was found-earlier to depend explicitly
upon the normalized covariance function, and therefore on B for this
exanple. This motivates an application of Barankin's theory.

The Barankin bound for unbiased estimates. of a is the greatest
dower bound on the mean squared error of such estimates about same
pre-chosen parameter point, Y, el'. The cholce of Y, is completely
arbitrary as long as it lies within the allowed parameter space.
Whenever at least one unblased estimator of a exists, there is an un-
biased estimator of -a which aclllui‘éyes the Barankin bound. ‘Ihis esti-
mator is' termed. "locally best" (for y =y ).

In general, only locally best urbiased estimators exist. Rao [1]
glves a necessary and sufﬁéient condition for the existence of a
uniformly best unbiased estimator (i.e., an MVUE). The theory of
complete Sufficient statistics [39, U40] offers a sufficient condition
for the existence of a MVUE.

The beauty of Barankin's theory lies in the fact that whenever a
uniformly best unbiased gs;cmxator exists, the Barankin theory will

provide us with it, even if no complete sufficient statistic exists.
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In our application, we would 1ike Eo fird, If g 1=, 2n
estimator of a which has mini=r vaiance awrg 231 wihizsed ssti-
mates of a. i’en;stﬁmmgxdloas&etm“almcfﬁam-
eter y. If a uniformly best umbiased estirater exists, it wdii mot
mmmedL,mwmmmm&&m
of a.

Actually, we will show by direct ealeuiztion of the Ezremidn
estimator that no MWVIE for a exists when £fe normelized epiaizce
function has unknown parameters. This czn be shown more expeditiously
" by maldng use of the fact that the (locally) best urbizsed estimator
-slpedtmtgaszéo.wﬁlnsfl,aﬂtbétgcw&smwﬂniaseﬂ
esﬁimi:éofd_'fa-‘-é‘i'bitraz?h,weseeﬁatgmisb&stmrg_ifaﬂ
only if n = &L mntis,gcmdmnzfizsﬁnmm-

mator which is best for y =y, . But this requires the ootimrm esti-

mbortodepeﬂmmgo; so the Barankin estirator for ¢ is anly
locaily best..

Despite the availability of the sizplie argirdent stove, it is
instructive to zpply Barankin's theary in detail to the joint estira-
tion problem. In so doing we will develop some of the m=chinery
siich is useful in applying Barankin's theory to the estimation of
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the cgeariance paraneters.

3.2 Cramer-Zao Sards for First-Order Antoregressive Gaussimn Noise
The problem Irtroduced as Exaple 1 earlie- is actually 2 first-

crder autoregressive scheme . This perwits us to wite a simple

amlytic form for the irmevse of the nolse coveriance matrix if the

N data sanples are wnifcrmly spaced en the interval [0,7)Y. e shanl

sppose that this Is the case. Then

4, = ¢ €Bl-8 8lur] 5wy = L. G2
where
8 = 7/{8-3) (3-3}

is the interval between Time samples.
Now xithn = & © and
p = exp(-8 §) (3-%)
we have [41] N -
O
n’—i'—z— -D}*'»
o1 - p%)

O™+

3

=

»
See Section 4.3

flrman and Reed [55] show that this noise covariance matrix has

a simple inverse even for unequally spaced time samples.
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™at is, n has aniy one nonzero of f-dizgorel on each side of the m=ain
m,zﬂtbemanMael+pzex:egtfwﬁem
CXTET eiements, whalch are unity. .

The Joint probability density Dmcticn of the coservebles is

172 .
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(The dependence of 1 -on B bes mot been expiicitly denoted.)

Now maice the folloxing associations between the companents of v
and the unimoun parameters B and a. ‘

Y = Ir; Y, Y3l = 8 ¢ a] G-D
and define

-..2 1 -

) _ {3 Inp(R;y)

1- = —E*‘ T-T 3 B,O= 1,2,3. (3“8)

L= [1- (3-9)

Assiming that all the camponenits of Y have wiblesed estirates,
the matrix L} comprises the desired C-R bound. We shal denote the
elenents of L} by ™. en, for exaple, 11} is the C-R bound o8
the variance of unbiased estimates of 8. The C-R bomd for wbizsed

-estimates of a is given by 133 . ‘The covariance of C-R-efficient esti-

mtesofaatﬂsisgivenbyln. Similar resaris hold for the other
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elements of L L.
We now proceed to calculate the elements of L and L1,
ietting
A(®Y) = In p(R:y) (3-10)
we have
AR;y) = In [(2::)“’ 2] + %-ln[det(nﬂ
1 M
-5 “2,‘:’___1!1““(1'“ - og )r, - og) (3-11)

We ey azrive st 2 sirpie expression for the deterrinant of i in

thds exaple:

R A LTI ISR
r P | FRTRTR P T " ! ey

o

LS )

dget(n) = ¢ (2 - p) = ;N - gH (3-12)

Aiso, 1t is cawvenient o define {he quantities

n
WURY) = Y, 0n.1,) I5, - ve,] [r, - Yag,) (3-13)
' TR
] 5
AfYy) = ir, - v38,1 , (3-1%)
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2
3°A(R;Y) 1 {32 32
1. = El———} = - 5 El—5 In[3=t(n)] - — AUR,Y)
‘11 ia*i ‘ 2!332 282
o 1) xaons%? m%i(ud) 2, 2
) EE!- -2 Eapd)’ [(ryrogy)™ + (o)™ + 2400
2.
+ 3‘;—(;—2—)3- [(1+67 + p‘)a(an! (3-26)
¢ (-p
- Now cbserve that
o) = (%-2) o2 (311
o) = (1) oo : (3-18)
(r0g)? = (o)’ = 6 (3-19)
" so that
22 2 iy Sy P 22... 2
1), = 3% (1 1)(34 ; - 2679 (1) _ 8% u«-i)ghp ) (3-20)
(1-p) (1-p7)
The calculation of 112 ieads to
2
. . s erny  99(R,Y)
112 - 121 = %E‘azln[cét(nl] - == (3.21)

[ 836d 28 36)
The first term zhove is identically zero since the derivative of
the Géterminant of n with respect to 8 lezds to a functicn which is

Independent of 0. The second ferm is

e e




32Q(_13,15 3 28
) - o [ 2
2 30D . 3D {o (1—p 2 s1o(r "‘51) + p(rogy)

+ 2pA(a) - (1+p?)a(a)x}

—L(p(r 2y p(r -og!) + 2pA(a)

~(1#4p9)B(a)]  (3-22)
Finally, using (3-17) through (3-19) we cbtain

- 62 (h—l)
"2 o (l—p )

ern'-er"“

azQ@,I)

3= 4= 5B 33 3o (3:2%)

SZQ(B_,Y) 3
SuE

55 30 ~20— [B(o) - pA(c)]

o%(1-¢2)

2
28p
- m [(rl—ugl) + (I‘ —ugu) + (lﬂ) )ﬁ((!)

- 2pB(a) ]} ]

i
l

(3-23)
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‘] 20 2 26p 1§2 ©&, ~ % uz:l (o8 eu+18u+1]}
" pen2 ;N1
s 2 :
+=0 __Jecgtregt (4p°) Y e
<,2(1_92)2{ 11 O 1§2 ;ﬁ.

N1 ;
P 1§1 €8 * SuaiBa] }
A since the noise s zero tean o
1,,=1,,50
For 1,, we obtain

a%in[éet(n)] _ g ,—)}

1
1. -xE -
2 "2 { 2%(c?) 34D .

3(62) i

3anGetm) _ 3§ 2
: 32(02) 3(02)

(4 1(e?) + () L'i(l—pz)]}

=2 =L

_ 3(02) 04

UBY) 2
%% 06(1-92)

[, - agl)z + (ry - a&)z

+ (1 + p2)A(0) - 208(a)]

(3-25)

{(3-26)

(3-27)

(3-28)

(3-29)
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133"132"‘53 PN } I .

3(0”) 3a 3(c%)3a
3%Q(R,y)
— 2= 23 (e, - og,)? + (ry - )2
207 % aa{o‘f(l—pz) 1 "

+ (1+pA(a) - 298((1)]}

2
o (1-p°)

N-1
-DE (eug_u +e n+1gn+1)]
=1

That 1is,

123 =l32 =0

The remaining element of L is 133.

3 A(g,y_) 1 (R,
S R
da

»
-
-
g
-
3
.
.
e
5
28
"
g
.3
23
s
H
3
i
4
b
.

N-1
=T—T[1g1*en3x*‘“"’2

L2

(3-30)

(33D

(3-32)

(3-33)

(3-31)
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oz 7 ) [(rl - 08))g) + (ry - aggy

ASZQ(B_,_Y_) 2 { -
i P (-9

R-1 N1

+(1+p)2(r -og“)g —DZ(I' -ug)g

N=i b
* Y T - "gu+1)5u+i]}
=1

.2' [ @D N-1
g, ¥ + +p
2(1 e i gn E
N1,
-p 2 g -+, guﬂ]
p=1
_2(2-p) L
= (g 2624 (1-p) ] (3-35)
2(1-;:2) f1 g“ uz'; B
Hence,
N Ne1
.= [g +g.+(1-p) g, 2y (3-36)
3? o (1+p) : g" §

To summarize the preceding results, we shall write the camplete

L matrix.
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P 2y.2 2 2 7]
(N-l}(1+p )6p (N-1)8p 0
(l-pz)2 02(1-p2)
fov-1ysp® N
o“(1-p7) 20 N-1
" si+g:+(1-p) z glz,'
0 0 S
- 0" (14p) -

It is now apparent from the locations of the zéeroes in this -
matrix that the C-R bounds on the estimates of the covariance param-
eters are not affected by the presence of the unknown regression
parameter, a. Similariy, the bound on the regression parameter esti-
mate is unaffected by the presence of the unknown covariance param-
eters. | :

Furthermore, though the above analysis was made assuming a single
unknown linear rejyression parameter, the results pertaining to the
covariance parameters are unchaniged for an arbitrary regression
function, f(t,a). This follows from the fact that the bounds perti-
nent to tle covariance parameters are insensitive to the presence of
the regression parameters as long as zeroes appeér in all the elements
of the L matrix which involve a mixture of covariance and regression

e

parameters (for example; 113 and 1?3 above). An inspection of thé

‘previous calculations for the quantities 113 and l23 reveals -that this

will be the case for arbitrary f(t,a) by virtue of the fact that
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Q(ﬂ;]_) is a quadratic form in R.

1

The actual bounds are found from L. If we let B and 0%

denote unbiased estimates of their respective true’ values, 80 and og,

then the C-R bounds for the covariance parameters are

-T—m——i N(l—pi)z
2 (167 IN(1-p2)426,)
.. 4po, 2
i 20*(14p2)
CE R 9 © \ (3-39)

,N(l-p:) + 2p§

where p_ 1s given by (3-4) with B = B,-
‘The: covariance between C-R-efficient estimates of B and gz is
given by

2. 2
112 2051 - )

- : (3-40)
SIN(p? - 1) - 2p7)

It is interesting to observe that 12

s in general, is not equal to
zero. This indicates that the C-R bound for estimating B is increased
when thé noise power, 02,, is unknown.

The appropriate results for dense sampling on an intérval of
length T may be obtained from the above expressions by taking the

1imit as N+ o and 8§ + 0 in such a way that (N-1)§ = T. This yields
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In the case when f(t,a) involves ‘only a single linear regression
parameter, the C-R'bound on unblased estimates for a is given by the
reciprocal «<f 133, It can easily be verified that this -agrees with
the result predictéd by Equaticn (2-29). Thus, the C-R bound for the
regression parameter estimate is:achievable, and is attained by the
MVUE discussed in Section 2.3. This conclusion also holds for the
vector o case. |

But since the MVUE for ¢ in this examplé requires knowledge of
B, we cannot expect to achieve the C-R bound for estimates of a whén
B is unknown and the observation interval is finite. Indeed, an in-
vestigation of the Barankin bound, which follows, will revesl that
the C-R bound on unbiased estimates of o can be -attained only if all

the parameters in-the normalized noisé:covariance function are known

precisely.
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T

the perareter so2ee ¥ 23 In (3-2). ke Aimetion

(&) olBx%)

EL A

- ] = - X ™ - Pt
elyx"ly,) SR SR A (3-£%)

=

b ancre LAty 2204

is caniral o tEe tetivdigue cutlned im Zrpendiz IX for caloniatims
i the Ezrandn boed. Eerezoisaaarbimvgﬁzeimm?inr,aﬁis

er—or. W2 shall lev y  correspand fo e Trus value cf the uimom

.. e




LA

EC Is regudved et Gy, ._o)t:ebanzd“ara_vamcf'rsi‘

wEneves ¥t is In 2 reglon (En general o&auigmv) c‘z"-
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r,rc

ey Is glven by
-4
&y
a2i{2;

& (y) +

" )iy HD it hn &0
F,

T

We will now procesd o esloulzte Gly,y" ly ) when o{B;y) s =
n@mt&em&ervectméviathem&aﬁmna-

e heve
[t et )12
(20 fz=ttn, N1V?

o

coy'lv) =

Jem “3{R - e B - e

Ex

+ R - G='1"n , I8 - Go']
T 3 :
-R~-6] “80@- -€z ]} & (3-48)

Yow Gefine the folloxing ratrices:
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H=[g¥+ng -ng] (3z-%3)

o
B= {'n, + [G2'Vag, - [sgol"'nao {3-50)
€ = [Bi'n il + [32'Fn,. 15 - it )™, e ) (3-51)
o 8 o
Them,

G e G I Y

clex'ly)) = X
o
_[ezp -%- [RER- RS -l & (3-52)
=
fsore that H & exists, and s=Yo fhe trensforation
F=-r5l? (3-53)
in the sbowm Integral. The intecral then becres
P 1 2
1 ata _ _ 5 A -
I= |em-SER-8H 25 - 2Rl.[6ethH]” 2 ad
En
1
- [aeta] 2 f , 1 { [:T_EH-IIZ][%_(gdwllz)T] _wS &
£ |
1
= (@t HI” ? expl 3 (&7 -(20)™2 (3-54)
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Sherefore,

\i/2,. 1/2 1 5T
G5,) et ) e G- EB N (o

<. =
ol (=t 212 (@t ng 312
(4]
TS expressio Is v2iid for 211 vaines of ¥ eF whenever 8° lies in
a2 regicn, .i‘g (G=pendirg oy "pon So), which ensires £ existence
e 5L, °
¥oou cinsider the gemerciized fHinmetion

d"i(i) =&(8 - éo) 5‘(6!1 - a'si) 6(&_- %9) iy 3 =1,...,n (3-55)

where a Genotes the vectar a with the £ éapanent dsleted, 5(.}
3

Gerotes the Hrae distriution, ad §*(.) denctes the first derivative
of (.} 1371,

If can be verified thet this is z legitirate cholece of 4 in
tarrs of The existence zd equelity of the integrals precsding Equa-

tion (3-55). It =an 21sp be verified &thet

n
f Clyyir ) dr,(y") = Z (GTnEi G)}:j ("5 - coj) (3-57)
Fg ‘ 3=1 °
o

and (3-57) holds for i = 1,...,n. In veciar-matrix form we have

1"[ a(y,y'ly) Ay" = [GTnS Glic - o ] (3-58)
B o]
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ofare, the desired choice for 6} satisfying (3-55) is
o .
a(y) = [GTa8 €1 aly) (3-59)
[+
e Barsiizin bouwnd for estic=ting the i-téea:pcn&nt ofg.'o is:
Rop) = [ oy - ) 3 @, oM &) (3-60)
r =2
"o
where (G (:‘;)lj dengtes the _j—» eleent of the metrix (30 G]'l.
0
Using (3-55) we find that
z U, JER |
cxle ) = & nsAG; (3-61)

s ggress exactly with the result in Equation (2-29). Hence, as
centicnsd earlier, the wdgusness of the locally best widizsed esti~
m2tcer drpiies that the Barankdn estirztor for ¢, wnich 1is best about

e tre vaine of ¥, is egual to the GIS estimator urith na as the
(o]

welght matrix. This ecan also be verified by direct calculaticn using
Eguation (3-47). Eenrce, we have

a=ga + [Gn G~ fexo-—i[R—qu [R-Ga]
0
B0
- [tﬁ_n—(iizg]Tnsolg-Ggg},} ak(y)

- T -1.T 3
= g, + [E'n, € % ng (& - Ga,

= (6", 6176, R (3-62)
o] 2]
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3.5 Irplicatias of {he Fesults Obtained so far

We have shown that there is no MVE for g when the norzalized
noise covarizmes Dxetion n2s Winoxn paraeiers, 8. However, we
have ziso seen thet in scce cases there is a drematic Gifference
betwesn the perfarrance of the MAE of e and the IS estimate of ¢. iIT
is natwral, then, to ask if, in the case of unnown ogvariznee pares—
eters, there is soe estirzte of g which is significantly better then
the IS estirate, though neturally not 25 good as the MAZ. -
fortumately, It is difficult o lend structure to the protlem of
searching for such an estinzte.

One aporoach, however, is o coanstruct the Baranidn estimater for
a ¥hich is best about an estizate of the true v2lue of 8. This really
anourfs to using the GIS estirator for a with an estirate of 8 used to
construct the appropriate weight matrix. This will not necessazﬁz_]g
lead to an unbiased estimate of g; wnless the estimate of B is made
from data which is stztistically independent fram the data used for
estimating a. tonetheless; it is possible that the bias will be small

enough to be accsptable; especially if the mean squared error in esti-

mating a is significantly reduced. lMoreover, in same cases this pro-

cedure will provide an unbiased estimate of a, even if the estimate
of B is correlated with the estimate of a. (‘his will be elaborated

upon in the neyt chapter.)
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This leaves Gs with the problem of estimafing the parameter §.

He could use the maxirzm Ikelihood (ML) estimate of 8 if it is com-
verdent to @o so. (Such a procedure would actuzlly amxmt to foint- ML
estimation of g and §, since the noise iIs Gaussian.) Or we cculd
ezploy Bareritin®s theory Co estimzte §. For exasple, we could perfomm
a dissection of the parereter space far § and apply the fechmique in
Eppemdix TX to obtain an wmblased estimzte of ezch point in the dis-
secticn. For this w2 nsed only specify the parametric dependence of

n o § and use (3-55) foz G(y,¥'iY,)-

In principie either of these tecimigues, or cthers not yvet men~-
tioned, could be ussd, though one method may be more practical than
the oiners in a specilic case. In the next chepter we shall consider
an estimate of B {vhere 8 denotes the unknown parazeters in the
normalized noise covariance fimction) based upon the knowy Hmetional
form of tne nommalized noise covardance fimction, 8(7,8) = ?&g—l .

fe(t)
Tnis estimate proves to be remarkably efiective for improving the IS

estimate of a in Examles 1 and 2.
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Chapter %
THE TTERATTVE ESTIMATION PROCELURE

4.1 Tntroduction
In this chapter we will explore a particular method of esti-
mating the pertinent covardiance parameters in Examples 1 and 2. We

will then incorporate the covariance parameter estimates into an

estimate of the regression parameter. Though developed thoroughly only

for Examles 1 and 2, the methcd is immeciately extendzble to other
problems in which the normalized nolse covariance fimction contains
unknown nonrandom parvameters.

Our method of estimating the unknown covariance parameters is
based “pon knowing the finctional form, 8(t,8) = ¢(1,8)/6(C,8), of
the normalized noise covariance function.

We will use the IS estimate of o to get an initial estimate of
the regression function. After subtracting the estimated regression
function from the data, we have an estimate of the noise process.
This estimate allows us to‘estima’ce 8 using the function 8(t,8). We

then generate the estimated .normalized covariance function
8(1) = 6(1,B), and the corresponding matrix 8. Finally, we construct

the GLS estimate of o by using n= @'1 for the welght matrix. At this

point we repeat the process .again, this time using the previously con-

55

e ot e

PR —

o e N A N e

Av

L
T AR R W AN

e BN T

PRETOLR & L URLE TN

Bicn g gerin S

B\

AR




-~ e

o < s o, R e e,

st:u:bec(ZSa:'.w..e cmm@m*vwaim&

Ps revissd estireie T B IsaSs toarevissd estimmie e e. TS 3ES
ke Izeresive estinetion rroodore.

Iereve ssmete o oo The Blas e be Ervesiigsted arslylicsily
£ cue exient. The mecm soueed esror w2l Be Amresiiceied by citing

exzsrinenitel resolis of stristing Eyorpfes 1 ool 2 en 2 &Agi=l cox—
;m:‘:&.
k= 2 poeinte to the d&velamert of the desired estinestion goo—
we for 8, = for the sk of caplsteress, we Incinde a Eried

dtccresion of the foirt mextbmm Ek=ifhoed (FL) estin=tor for y. IS

«i22 be sesn 52t s estinstar is rof mrecticzl for Ex=mles X ad
2. e 2iso present zn estinste of y wiich s resiiy auiy soiiceile to

eplioy to estizie £ In Exarples X 223 2.
B.2 Maririn 7AkeRihocd Eztimstiom
The M. estizste of y is dolined as the solutim o the 1il=lihcod

eguation

oﬁ( 34) l

d:{_ (&3)

IQ

]
ll
«n

where A{R;Y) is a5 in (3-20) =3 Y denotes the ¥, estimate of Y.
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g,§=1 mw(rp czggz”t {r,-cg)=9
anﬁ-")

o - s 4] &5 = =] T A' = -~ e
were p 2s given by (3-8) itk 8 B,aﬂnw = 8=8" Using
-t Im Eretion (35) we nsy rewife Exstion (A-3) &S

=

-~ - x| 2 EN
a=E2 1)

N
-z ) = 205D
;;_,‘5 Lo ] El=P

-~

Trds system of eguztions mrest be solfved simpifzmeonsiy for e 2nd p
to cbizin ihe M esticzle of y. This is indesd 2 Efficuit task,

ew=n m 2 ogpuier; and tre siftuzticn is worse for Ex=ple 2.

B3 22 fzorosch for Sutoregressive Scheres
Suppose w2 heve dztz of the fom

r = +e spu=1,___N (&=5)

= - !!—5
. e, =, ;W (&-5)
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w =05
&

2
W =g &
B w w o

mow S=ies 2 sempie ef

ef 2 z=o reEn, wiite, S=wssizm

&-7)

{&-3)

B va:lcz=Rrmancs

&ss,aﬁtézepaem!:—scﬁ‘am scizm £5rst ordsr amoregressiwe

sZene. Eg&eoéanteeuaﬁtbeimtiﬂtim, € .
stzila sgintim fur the dfferenee Er=tion (8-5) exists
s salitim is fio”
e, =X pkw
=0
Chserve €=t the w=dawee of e ep‘moa«:sis
G
Ez,opw w1‘2550&= wz
=0 I=D =0 (3-p°)
&l tae covariznee is
#uv) =ee = (o2 _; +w e =pin - 1,)
The so.u‘::im (212) is
i —_
X = - 'u—v| 2_ 2 lu-v]
su,v) =9 =p e, =op

For Exzple 1 we

were

—a

consicéering the

8(,v) = 6> exp[-85|u—v|]

Estr->> 2
o >

it |sj<a.

(&3) -

{&-30)
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1
. B If the nodse is Gzissizn, the covEmdzmes Hmecticn caplietely
xeciﬁesﬁnemﬁmgm{e}- =t is {er} InExapie iisa b
3
Czussizn first ardsr zrtoregressive stiwre ! 1
Inp=-8§ (&-2Bk) b
o
Now, for ihis exzrple w2 =y wite (using Enmtion (2-5)) I
. I3
= —_ o — gl —_ -7y = b y ) e
MB rﬁ G_;? p--u__l qﬁ.‘-l) B 2,550 (L—S) 3
&xﬁsﬁmewﬁaemlsscfa@a@an&ﬁtemﬁsamwec&nget
an spmroxicztion to the ML estirmtes of @ end p by minirdzing, with
2 respect Lo @ &4 p, the quatratic fom 3
N ;
3
S Q= E (&-16)
I ]—“::2 :
L p
-4 (icte: The suwr=tion in @ c=mot start 2t p = 1 because this would
: | require lmosing I + 1 velues of T . ]
| 3
; 11 o3 ~= 2] o= 3
| Proeeedhzgfov':a_ybysetu.rgau o=d Oc.miap a-a_o :
= P=P o=p
¢
{ we find thst @ anmd 3 are the solutions to vhe similtaneous eguations

N
p (ru - b ,)g, - Bgu_l)
q=¥2 (1-17)

E(gu—cs

=2
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This system of equations is stiil @ifficuly o solve sirmitan-
equsly. Bowever, it is inmteresting o inspect the structhure of ¢ and

in (B-17) a4 (8-28).
Notice that @ in (B-i7) is very similar {o the ML estizate of ¢
in (L-B), ard if p were I—zmm, then the V4, esticzte of ¢ would be thne
}@iE of a.

Notice also that tie estimate of p in (4-18) amowmts to sub-
tracting cut an estimate of fhe regression fimetion frop the data, and
using the lmown covariance fumetion of the noise (see (£-13) and (4-14)
to construct the estimate. In this particular case, a is to be
obtained fram the simltanecus solu'cioﬁ of the above eguations and
them p can be caleulated. However, the form of the estimate in (4-18)
suggests using the LS estimate of a to form p. This then, is a way of
motivating the scheme of estimating the covariance parameters by what

we will term the "inverse-covariance-function" technique.

4.4 The Inverse-Covariance-Function Technique

This method of estimating the covariance parameters, B, is a

-
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sirple extension of the estirzte in Eguation (4-18). The idez is to
chtain an estiz=te of the nodse proesss by using the IS estimaie of

to subtract cut an estirate of the regression function. Then we

In

treat the estizated noise process as though its covardznez fimetim
n=d the Dmetimeal fore given by ¢(7,8). In the samled data case,

for ex=mle, we can construct estimates

$d) = 3 &8 ,3p=01L...1-1 (5-19)
- where
§u=ru-&Lsgu su=13,....0 {&-20)

(Coserve that éu is a zero mean Gaussian randaa variable,)

¥We then set

8(08) = ¢(05,8)| 53 (1-21)

and solve for Ewhich satisfies (4-21). This requires, of course,

that we have as many estimates, 3, as we have unknovn parameters in 8.
Actually, as has been indicated, only parameters in the rormalized

covariance function are pertinent te improving the IS estimate of a.

Therefore, we will consider estimates of the normalized covariance

function, €(t,B8) = ¢(7,8)/¢(0,8):
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:p=1,...,0-1 (&-22)

Henceforth B will be regardsd zs 2 paresmster vector of the nomelized

se covardance functicn.

we ﬁ‘ﬂ’l set

{ B CORETE X S : (-23)

. - A -
and solve for B. ‘lh;‘s alloss us to construct an estimate of a(z,B8),

8{}, For the enbire rangs of *.

M o g
’

‘i‘wo i1lustrate the procedure we wili construct the covariance

naz'a're.,er estimates for .‘f'ﬁ:asw,,es 1 and 2.

S 4 - 4.1 Estimating p in Examle 1
. - ’.zn.tms -exarple we cbsarve that

.8(5,8). = e = (1-24)
and’ an est;imate of p will suffice for the purpose of constx;ucting the
deSifed GIS estimitor weight matrix. There is only one unlmown param—

eter here, s¢ owr estimate is
6 =68(8) = BHf—— (4-25)

This is identical in form to the estimate in (4-18).
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Suppose in Examplz 2 we rezand the bandiddth parametes, §.as

N ’
O nti il ix

kncn, & the center-frequency paraieter, 6, as ‘the only uwnknown )
%88 = &% s 0 (2-26) {2
Again we have only one eoigosn pérameter, and the estimate is ]
asc B %“— cos*l{eﬁes«é\(é)’s (-27)
F H

where 8(8) is gived by (%-22). (Actually, it is sufficient to estimate

the quantity a_’:éﬁ » Since this enzbles us to construct the desired '

welght matrix, 8%, in the GiS estimator.)

4.4.3 Eséfggatmg Bandwidth and Center-Frequency in Example 2
If we treat'@c and B as mqm parameters, we need two
equations to obtain estimatés of these parameters. We observe that
8(5,8) = e cos 16 (4-28)

288

8(26,8) = ¢ ™" cos 2uw 8 (4-29)

This Jeads to the equation

D>

928) - B(s) f1-tan (@ 8)1 (4-30) ‘

8(3) ,
Hence,
A _ ~ - 1/2 3

mc6 = tan™t (1 - 8(28)/ 3(8) 2] } (4-31) K

i

3
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= & = 3(8)/eos(B 8 (2-32)

It shold be cbserved that in the zbove exzmples there is a pos-
sibiiity that (1-25), (I-31) and (E-32) wiil lead to iilegitimate esti-
mates, for in (B-22) we have no assuisnes that 8(28)<[8(5)1%, and in
(4-25) ard (4-32) we carmob be assured that p>U. Turthermore, since
these estimates will be camputed o a digital computer, it is wise To
modify the resulting equations, whenever necessary, to prevent the
occowrrence of iliegal arithmetical machine operations. For exzmple,
in (2-31) we czn be sure that we take the sguare root of 2 nm-
negative muber if we ‘cake the absolute megnitude of the uantity
(1 - 8(26)7{8(s)}?). wnile this must be regarded as an artifice, it
will prevent a machine abort and provids an answer, vwhich can then be
subjected tc serutiny. (Of course, one could provide for an indica-
tion by-the camputer vwhenever an illegal operation would have re-
sulted if not for the artifice.) It is remarked here that in the

simulations of Examples 1 and 2 such artifices were not required.

4.5 Tnhe Bias of the Iterative Estimate of o

Once the parameters of the normalized covariance function are

estimated (by any method) we generate the desired weight matrix,
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n=8 1, and the first iteration of the procedure provides us with
E.) TA '~ N
G = [EAsT CR (£-33)
1
Notice that the mean of & 1is
1
& =eo+ 65016 (4-34)
‘1
¥We shall now investigate the bias vector,
b= [6The) 6The (4-35)
Consider any two nxn matrices, A and B, such that A'l exists. We
can express the matrix [A + B]'l as a power series
st = a7t - B+ A D2 - @D+ L (4-36)

where I denotes the mm identily matrix. (Equation (4-36) is easily
verified by separately pre- amd post-miltiplying both sides by [A+B].)
Now revrite (4-35) in the form

-1
b= [(GTcG) + 6Y(h - c)G] c'he (4-37)
where ¢ is any NxN matrix for which [GrTz;G]'1 exists. If we associate
[GTZG] with A in (4-35) and [G*(R - £)G] with B, then
b= [GTz‘;Gr‘E{[In - ([GTG\ - D)el e e
+ /{GT(H ] )

- ...}GTﬁg} (1-38)

- —~ e 7 e o b s

MR e e A T ARSI R T e - t
L N i Y

P T TR N
e Pl

Sl

L e e s g s
o

Sy

R VR V0D V L i &) oA v S P AT RO

s
8 o A ST S ne A




Y

' il
4 1
HsAE
i

2

,.
- v‘rqo-u-wm
o R,
I
KO
‘

€6

fi

. N
[RSUPFT I\ VRIS CAR JO)

Now suppose that for every palr (15,v) where I<ugt, levd, ﬁw

-

mwmmwmmmmuwrmmwﬁwxmmmwm
oot
o
il

-can ve -expressed in the form -

g

a

2.

i

where o 13 Wgﬁ,ﬁ:‘_ integer <N, the a, are any real nuibers, and K
is @m«{feal} mmber(ii: 2%y be a random variable) which is a ccormon
factcm efall the <ievents of ﬁ This méans that every element of n,
mrmlized m }JE, ;as \an:-e@ahsion into a weighted sum of products in-
igalﬂm% %ri;é;_z&?zz mm‘zer o: i‘é:&ors of :»:ero-me_p éaus’sian random var-
iaales :isb}' '1x}$taii§:e‘,A consider Exanple 1. Fron Egquation (3-5) it

1611088 Gt with £ as in (425}, 0 satisfies (A-29).

- A g N

- Tve significance of the property.in (4-39) is that when it holds,

every fem in iﬂ} 4 Equation (4-38) involves & linear cambination

% B
St e ek s

o

Gaussian rendom varisbles. Henée when (4-39) holds, b = 0, and the

A

H
i
of 'prbauct;is, 1 ,ﬁ}i&h'tmré aré an odd number of factors of zero-mean ,

first iterated estimate is unbissed for-a: It is edsy to see that

when {4-39) holds, -each successive iteraticn will also yield an un-

by
ol

hiased eét’im_e{te for .

‘Hence, the iterative ~estﬂ”jnai;g=, for a in Example 1 is unbiased.

o o e A S S e e

When (4-39) does yiot hold it is diffiicult to establish the bias

—

of the iterative estimate Tor o. Hewever, (4-39) merely comprises a
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sufficient condition for unbizsedness. It is therefore possible that ,‘ g
even if (4-33) is not satisfied the iterative estimate for a will be
ublased. Also, the blas may be small, even if it is not exactly z‘e:o-
In Example 2, for instance, Equation (4-39) is not satisfied when W,
is treated as an wnkmown parameter. Nonetheless, as will be seen from

the similation results, the bias of the iferative estimate for-a is

iy

insignificant.

4,6 Simalation Results ,
We will now move to a discussion of the results of ~sixm1.1ating P
Examples 1 and 2 axd enploying the iterative estimate of a. We have
glready described the estimat!on procedure, @nd we have given the
explicit form of the covariance pavameter estimates for each exaiple.
The simulation naturally involves .a kmté'é(farlo approximation of
the desired ensenble expectations. A technigue suggested by Levin [43]
was used to simulate the desired noise random process. The actuzl
camputer programs ave presented in Appendix ITX. ;
It was decided that since the mean and variance of the IS esti- '
mator could be calculated analytically, a conmparison of the analytical-
ly obtained results with the simulaticn results for these quantities,
would serve as an indication of the reliabllity of the simulation.
The simulations were carried out using a sampled data approach
‘ with ten time samples uniformly spaced on an interval of unit length. 3
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. Eguaticn (2-13) was used o calceuizie the actuwel verdzmes of the IS

estirate of a, and Sguation (2-23) was used Lo calcuizie the varisnce

of the INUE. These guantities are damoted by V-LS and 1(3 respec—
NAR
of

tre mezn vaiue of

*

tively. We denote the Monta-Twrlo calealztion ¢
Vely
&Ls by ¥ @i that for the reen walue of the k— iterative estimate

of ¢ e,,' ;..... . The Nome-Carls = aspproxdi-ation for the cesn sgusred
k
”~
error of 4 g ghout the trve Tzlue e, i3 represented by 1SS, o, while
. . E“ . <
the corresponding quantity for the k— iferative estisziz sl is

denot=d by I’SE.I,., . f&s a mezsure of the perfomence of the fterative

scneme we use t?za quantity FERF, = V. /R=.. . If ihe similation is
Bt “z.

&

accurate we shoulid have O<PEEE, ~~L£1 for 211 k. In owr sirmdation only

two iterations were mzde. The valus of PEX "'2 is given for these

simulations. T calculation of F’z;?{h‘z was rade before trumeating t e

AL
values of V‘m“ and I‘"‘I‘rz
apparent discrespancy in the data.

to four digits. Tnis accounts for the

-
The parameters in Example 1 were chosen as follows:

Case 1. a°=2.0;60=.01;k=130

Case 2. oo =2.0;8 =.01;k=1
0 o]

Case 3. a°=2.0;30=.10;k=1

Case 4. a =2.0; 8B =01 ;w0 =0
[o] o] [o]

*
See Equation (2-37) for the definition of k as used here.
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The results of 1060 Menté-Cerlo mms (requiring just over two mimutes
of I8 350 ruming time for each case zbove) are presanted in Table I.

The simmlztion for Example 2 is slightly more camplicated because
the metrix inverse of O does not have tne simple structure it had in
Exzple 1. A camputer progrem for matrix Inversion wes used to
caleulate 8, and 6o dterations were performed to estimate a. Tne
caputer reming tire was limited €o ten minutes for each of the two
cases tried, and the maximen muber of Monté-Carlo trials which could
De obtained within this time period was used. As in Exanple 1 the
simlation emloyed ten time samples uniformly spaced on an interval
of wnit length. In case 1 oniy the center-frequency was regarded as
the unknown covariance parameter, and Equation (4-27) was used to esti-
mate it. 1In case 2, both the bandwidth and center-frequency were
estimated using Equations (4-31) and (4-32). In both simulations we
used o = 2.0, Bo = .01, and fc = wc/217 was set at 1.5 hz cor-

responding to k = 1 in (2-51). The results of the simulation are
displayed in Table II.
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4.7 Discussion of Simulatiocn Results

With the data conveniently swmarized in Tables I and II we can
make several observations. First we will discuss the data in Table I
pertaining to the autcregressive example.

Notice that in all but Case 4 there is a dramatic differénce
between the variance of the LS estimate and the MVUE; even though
these simulations are for the sampled data case. This indicates that
the comditicns for potential dramatic improvement over the IS estimate
given in Equation (2-37), which were derived on the basis of a con-
tinuous-time approach, also serve as a guide to such behavior for the
sampled data case.* In fact, Case 4 does not satisfy the conditions
in (2-37), and indeed, does not offer an example of a case where
dramatic improvement over the LS estimate is possible.

As mentioned earlier a comparison between MLS and s and between
VLS and MSELS serves' as an indication of the accuracy of the simula-
tion. With this in mind, there is little doubt that the iterative

estimator for o significantly improves the LS estimate, in problems

*Undoubtedly the extent to which this hclds depends upon how '“dense"
the sampling is. For the cases studied herein the sampling rate was
sufficiently high that all of the samples fell within the correlation
time of the noise process (the value of T required for

8(1,8)/4(0,8) = e 1),
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characterized by Example 1, whenever dramatic improvement is possible.,

AP e Ny s

Even in Case 4, where dramatic improvement is not possible, a cém-

ORAnre 0

parison of IVBELS and NBEIT indicates that the iterative estimator is
2

o worse than the LS estimator.

L S e e e )

Also, the degr:e of improvement is such that the variance of the

iterative estimate of o is often within a few percent of the variance

of the MVUE of o after only two iterations. In Cases 1 and 2 this

Liataoness oo o

represents a reducticn in the varianée of the LS estimate of two

Dt iy

orders of magnitude. 1In Case 3 one order of magnitude reduction in
variance is obtained; and this is all that could possibly be obtained
in view of the ratio VMIN/ VLS'
Coupling the above results with the fact demonstrated earlier
1 that when the inverse-covariance function estimator 1s used for p the
! terative estimator of o is unbiased, we coniclude that the boot-
T } strapping technique for estimating o, using the inverse-covariance
| function estimator, is an effective tool for estimating the regression
parameter in problems similar to Example 1.
An inspection of Table II, which pertains to the simulation of

Example 2, reveals the same outstanding performance.. Note that even
when the covariance function has two parameters to be estimated; the

iferative estimate of o achieves two orders of magnitude reduction in




_ the meén squared estimation error; and again after only two itera-

tions. It should also be observed that the mean value of the iterative

estimate of a is approximately equal to o . Hence, even though the N :

CES

conéition in (4-39) is not satisfied for Example 2, the iterative

R R AR ANE M A SN

estimator for ¢ has negligible biss. :

It is interesting to cbserve that in both of the examples sim- ;

uiated, the bootstrapping estimation procedure is capable of reducing I
the mean squared error of the LS estinator by arders of magnitude ;

even after only ore iteration.

RN

4,8 Conclusions

IR e

Ve have demonstrated that in problems involving the estimation

] 3 Yy

of linear regressicn parameters in colored Gaussian noise, the simple
LS estimator can be significantly suboptimal. When the noise
covariance function can be described as a known function of a finite
number of unknown, nonrandom parameters it is possible to take ad-
vantage of this information to improve upon the LS estimator.

By starting with the LS estimator of the regression parameter and
employing an iterative bootstrappingﬂ procedure, we have shown that it

is possible to gréatly reduce the mean squared estimation error, even

after only one iteration. Furthermore, even though no MVUE for the

) regression parameter exists unless the normalized noise covariance
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function is known precisely, we have seen that the performance of the
iterative regression estimate is very near to the performance of the
MVUE after only two iterations.

Depending upon the noise covariance, the bootstrapping procedure
may lead to an unbiased estimate of the regression parameter; or to an
estimate which is approximately unbiased. VWhen the noise is a
Gaussian, stationary, first-order autoregressive scheme, the iterative
estimator can be rendered unbiased.

The bootstrapping procedure requires an estimate of the pertinent
covariance parameters. We have suggested several approaches which may
be taken to obtain the desired estimates:

1) maximm likelihood

2) Barankin

3) inverse-covariance function.
Judging from the simulation results, it does not 2ypear that the
success of the bootstrapping procedure requires an unbiased estimate
of the covariance parameters. To this extent any of the above-men-
tioned approaches to covariance parameter estimation are admissible,
and the Barankin approach, which would provide an unbiased estimate
at least for selected points in the covariance parameter space, is

possibly superior. In the examples simulated, the inverse-covariance

B e e
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. function technique was employed because of its simplicity.

4.9 Suggestions for Further Study

VWe have exhibited a class of problems in which the IS estimator
of linear regression parameters can be significantly improved upon
using a bootstrappir.z procedure. This class of problems is charac-
terized by the property that the noise spectrum contains a "spike"
which has a bandwidth which is small campared to the regression
signal's bandwidth, and which is located so that the "mainlobes" of
the signal and noise spectra are separated in the frequency domain.

It seems very difficult to state useful necessary and sufficient
conditions for the effectiveness of the bootstrapping procedure (or
any other procedure, for that matter). It would be desirable, however,
to extend the results obtained to other problems where the noise
spectrum contains several spikes, for example.

It would also be interesting to find other classes of problems
which have the potential of dramatic improvement over the IS esti-
mator, i.e., where the variance of the MVUE is significantly smaller
than that of the LS estimator.

Another topic of interest is related to the complicated problem
of investigating the sensitivity of the GLS estimator to the choice

 of the weight matrix [U44]. It would be interesting to compare the
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. performance of the bootstrapping procedure using different covariance

parameter estimates.
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APPESDIX I
In.Section 2.4 we had need for the solution, h{t), of the in-
tegral equation
T
o2 f n(t) exp(-Blt-s|) coslw (t-5)1 db = 1 5 s€[0,T] (I-1)
0

Here we present the details for finding h(t).
According to Zadeh and Raggazzini, [45, 461, by virtue of Equa-

tion (2-62) the solution is of the form:

e—k('r—t)

— -kt
h(t) = Koe + Kl + K26(t) + K36(t-T) + K4

(I-2)

We will find the six constants by direct substitution of (I-2) into
(I-1). To facilitate the algebra we will perform the integration for
each term of h(t) separately.

Hence, inbegrating with the kernel K e™% e obtain,

-
]

T
o2 f Koe'kt eBit=sl oo [w (t-s)] dt
0

S

= g%k f e Kt g7B(s-t) oo [w (s~t)] dt
OO [+
T
+ ozKo f g7kt gHB(s-t) cosw (s~t)] dt
s

=1, +I, . (I-3)
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. where
2 ~ks

K 0°(k-B)e )

I, = ; 5 {-—1 + e"(k-s)s[cosw s + kfcséimncs]} (I-4)
w_ + (k-B) ¢
KR (e a-e)

112 = g 5 l+e s [—cos[u)c(T-s)]
w, + (k+8)

%)
t c 5 sin[mc(T-s)]]} (I-5)

The integration with Kl as the kermel may be obtained from the
above by setting k = 0. Therefore,

T
_ 2 -B|t-s| -
IZ =0 le e cos[wc(t-s)] dt = I,

+I (1-6)
0 1 22
where,
. 0‘2K13 1 -Bs w. in (1-7)
=—=1l1l-¢e cos ws -=—sinuws I-7
21 w2 + 62 [ c B C]
C
2
oK,B W
_ 1 ~-B(T-s) C 4
I, = m 1+e [‘COS[“’c(T’S)] tg sm[wc(T—S)ﬂ (1-8)
[

The integrals resulting from the third and fourth terms in (I-2)
are easily seen to be w

_ 2 -Bs
I, =Kg"e cos u s (1-9)

K.o2 ¢ B(T-9)

II; = K, cos [wc(T-S)] (1-10)

e - A - s
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Rinally, the result of using K,e™*""%) as the kernel may be
found from (I-4) and (I-5) upon replacing k by -k and K, by K4e'kT.
That is,

( Jevs]
-2 [ ¢ K(T-t) -Blt-s _ =T ~

I5 o (‘)" Kae e cos[mc(t s)] dt 151 + 152 (I-11)
where,

ISl = - ‘2 <1 +e [%os ws

w, + (k+B) ¢
w
[o4
- m sin (ﬂcS] (1-12)
Ko Ge-g)e™ o™ - (B-k) (T-s)
152 e — l+e [}cos[mc(T—s)]
w_ + (k-B8)
®
- g =g sinlu (T-s) ]] (1-13)
We now solve for the constants by requiring that
L +I,+I,+I, +I,=1 (I-14)

The right-hand side of (I-14) has no dependence on s. Hence, the
constants on the left-hand side must be chosen so that the dependence
on s vanishes. For example, it can be verified that the terms in e**®
which .appear on the left-hand side of (I-14) will vanish for arbitrary
K, and X, (different from zero) if

k2 = wi + g2 (1-15)
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To solve for Ko and K, we equate the coefficients of e-BSsinmcs

4
and e B (T's)sin[wc(T-s)] to zero. This results in the equations
-kT
Kw K,w Kwe
T 24"‘21c2+l:;.c 7=0 (1-16)
w- + (k-B) w +B w- + (k+B)
(o3 C c
~kT
Kowce ) Klwc K4wc _ i
2 777 373 7-0 (I-17)
w- + (k+8) 0w+ 8 w” + (k-B)
c (o] Cc
This system of equations yields
Ko = K4 (I-18)
and
~kT )
L b . 7t 7|+ Ky 21 7= 0 (I-19)
W + (k-B) w_ + (k+B) w, + 8

But from the constant terms on both sides of (I-14) we have
wi + 82
K, = ———— (I-20)

1 2802

Inserting this result into (I-19) yields
[w? + (k-8) 1[0} + (k+8)?]

K =~ (I-21)
° 2802([w§ + ()] + [0 + <k-s)2]e'kT)

B

Finally, setting the coefficients cf e~ Scosuocs and

. e_B(T"S)coswc(T—s) equal to zero provides us with exactly the same

U
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. equations for K, and K3; so that

2
KZ = K3 (I-22)
ard
:Kooz(k-B) ) ) Koc"'(kﬂ;)e"kT
TRV AR Y 7 =0 (1-23)
we + (k-B) w, + (k+B)
Hence,

k(i + 8)?) - ? + (k-8) 27T

K. = (I-24)
2 2602(‘[90‘2: + (k+B)2] + [wi + (k—S)Z]e-kT)

Using {I-15) these results may be expressed in the form of Equations
(2-55) through (2-59). .
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APPENDIX II

In Chapter III we made use of Barankin's theory of locally best
unbiased estimation. Here we give details of the development of this
subject; following closely the approaches of Barankin [14] and Swérling
(15, 471.

We begin'by defining a measure space (X,¥,u) where X is a sample
space of points, x,¥Fis a o-field of subsets of X, and u is aa countably
additive measure defined on¥.

Consider the family of probability measures {P a;('IEA} defired on
¥ where a is a real scalar parameter belonging to the set A. We shall
assume that the measures Pa are absolutely continuous with respect to
the measure p for every acA. Hence, we may define the family of
probability density functions, ®= {pa;aeA}, on X with respect to the

measure | using the Radén—Nikodym theorem. So, let B be any subset of

X. Then

fdP =fpduych.andaeA (I1-1)
B % B &

In our application we shall take u to be Lebesgue measure, and
vill be the family of Gaussian probability densities defined on the
extended real line. Ve shall retain the above notaticn, however, for
the sake of generality.

Our goal is to draw inferences on the unknown nonrandom parameter,
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&, or on some known (real valuéd) function g of this parameter. That

P

is, let g be a known peal valued function defined én A. We séek &

real velued p-measurablé function, T (x}, on X which is. an wnbiaséd
estimate of g(a), and wnich is best in the mean square sense at some
prescribed point o = o - Thus, if we 1§t'2i"denote the class of all

p-measurable functions, T(X), on X having the unblasédness property.

}{ TP, = gla)  Noeh (I1-2)

we seek T e¥such that

| | Jo - g, < fir-ee)e, v (11-3)
X ° X °

It is convenient to define

$(x) = T(x) - gla)) (T1-1)

[P NI URIEISUITS [

h(a) = gla) - gla) (I1-5)
We also define the norm on X with respect to the nominal measure

Pa for any u-measursble functicn, ¢ as
. 1/2
ol = [{wz(x)dPu (x,)] (11-6)
0.

o]

o o b e e s

Note that || 4| 15 the mean squared error.of the estimate T about
g(ao).
Now for Te¥ we can rewrite (II-2) as
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That is, B(Y is an-wbizsed estimater fof g(d) 4T énd only if ¢(x) Is ‘
% 23 usbiased estimstdr for hig)-. ‘
We shall fiow &soume that 2ach of the Tetios
E i 3 QOI;X), = ?g =r 1-
G
is defined y-alost &verywhere on X, and that w{x,x), comsidered as a

; function of @, is Borel measurable. Then Equation {TI<7) takes the
form
] f ¢>(x)7r(a,x')d’fa. {x) = ne) ; YA — (11-9)
" X% o
et us now consider the measurablé space (A#), and let A be any
g signed measue on {A#) such that the integrals fh(a}dr(a) and
4 A
3 j f w(a,x) “1(0:)@:1}:"Oz (x) exist. Then we mey integrate both sides of
1 2 o "

(II-9) with réspect $o A and obtain : |

| | Eg
‘ Hneaie) = | I fatemstoanme, ;
A - iAX %o ;

< lsd .ﬁ}«n(a,x)dx(q)_ni (II-10)
e |
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. where the ineguslity follcoss Lhdm & spplicatian of the Sciwarz in-
egualivy.

This Ieadx to the sesult theb Che goeztest Iower bowmsl on the

; { n{a)SAtz)| } \ 4
TIC EAE R & ¥ S & TE32%S
i B il B = = {IE=21]
gt i stemanel® i
TR A
The least upper bowd of the expressicn the rlisnt 3 w7k side of

(I1-11) must be taken over 231 sdudssible zeasures A in order to obtain
'|1¢3ii,2g1b, However, the insertion of any aiwtssible A ou the wight-7ind
side will furnish a lover bound for JeiZ, though not necessarily i
greatest lowexr bowrd.

The quantity u¢uzg1b is referred to as the Baraniin bownd. W¥hen
o, is regarded as the true value of the parameter «, Equation (111}
provides us with the greatest lower bound cn the variance of ali -
‘biased estimates of g{a).

Our main concern here is with the problem of evaluwating the
Barankin bound. Ve are also interested in obfaining an explicit con-
struction for the estimator which attains this bound (hereatter
referred to as the Barankin estimator).

e e

e

N A
N

1

9 Jrams
it

OIS 1

o\

Ny

o g s iy

Siiind



e

MEOM o Sl ol

[t Hlawt)
T F .
.

L o o

93

(=)
To this end, for any given o let ¥, © Genote the set of all

funetions, &(x) satisfying (A7) for vhich [3f]% < =. Assume that

(e) (a)) (e )
A ,  is nonempty. Iet %, " denote the closure of ‘2[2 taken

(a )
th || | es the metric. Since %, © is closed and convex, there

WRrEIe

exists a fumcticn, ¢ (x), (and correspording to it, T (x)) which
(o] o]

R SIS

()
minizizes §6]I” for all Ametions in %, © and which is wnique with

S A § S LAY

H probability coe (P measure for any agh). It is remerked that in

ST TR IITY

general TO(:Q %111 depcend wpon a - This will be the case unless To(x)
- minimizes ﬂc}sﬁz for every aoeé.
Tt will be assumed that To(x) is an unbiased estimate of g(a),

for if this were aot the case, there would be no unbiased estimate of

g(a) viich had minimy, Fean sguared error when a = a .

Consider now functions (o} defined over A having the form

i
:
= | * 4
| M) = j;!(xJ&Pa(x) Yoeh (11-12) ;
| X ?
’{ where H{x) is any p-measureble fmetion such thay JHf? < =. Iet P 3
' ) 4

Gerote the family of all such functions. Then, it is easy to shoy

that for eny feF and for ary concomitant H, the integral

f Té(x)!{(x)d?e (%) yields the same constant. To see this, for sam
X o
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&(veal) € cefine the p-measurable function

T*(x) =T (x) + efH;(x) - H,(x)] (I1-13)

where H, and H, both satisly (II-12) with HI? <= and [, 1% < =.

*
Since H, and H, satisfy (IT-12), T (x) is in Y. The fact that [
" (o« )

3
and |Hzll2 are bounded enswres that T (x) is in %, © . Consider
o - segrt e,
De) = J[T(x) - gla )] @& (x) (TI-14)
X o
aD(e) N
Calculating e will revezl that unless
Sz ) - 15,60] @, () =0 (12-15)
X o
. aD(&) ' 4+
we will have -3—6[ # 0. This, however, would contradict the
€=0

definition of T (x).
[o]
(e )

o]

We may nowr define a functional A on F as follous. For

£(a) = ),{f HOO, (5) 5 cen, [HI? <=

define
(o) '
AP = { H(x)[To(x) - g(ao)} dPuo(x) (I1-16)
‘ (a)
Toe fact that ' T (x)E(x)AP_ (x) is a constant ensures that A © [£]

X [0}

" is uniquely defined for any f<F and for any ccernicomitant H. Note that
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5
(uo) (uo) (ao) :
~if f) and £, ave elements of F, & ° [, +#£,]=A °[£] +2 °[£,]. -
(e) (), b
Also for any constant k and for all feF we have A ° [kf] = kA ° [f]. ]
(c) 1
Therefore, A °© is a linear functional defined on F. ;
Two observations are now in ordsr. First we notice that for
f(a) = ¢, where ¢ is any (real) ccnstant, we may use H(x) = ¢ in 5
(I1-12). Eence, for any ccnstant, c ii
() 3
A %fc] =0 (IT-17) :
Also, setting f(a) = g(a) we may use H(x) = T _(x) and discover that ;
(a)
o _ itan2 _ 2 3
b e = el = ool (11-18)
: E
This shows that evaluation of the Barankin bound is equivalent J
(@) i
to evaluating A = [g]. We will now show that it is possible to ;
(a) f

evaluate A on a certain set of functions of a to be defined below.
Once this is done, if g(a) can be expressed as a linear cambination of

(x)

the funetions for viaich A ° [-] can be evaluated, we will be able to

4 3

\001
calculate & ° [&]
Define the function

G(a,a! [ao) = fﬂ(a,x)n(a',x)di’a (x)

3 0

G il N -‘n PYPTOIASIN

Ay 7,

RN Y

(11-19)
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and assume that G(a,a' Iao) is bounded for all acA whenever a' belongs

to same set AGCA. It is easy to see that G(u,a'lao), considered as
(o]

a function of o can be expressed in the form

Gla,at]a,) = }J{' B (x) 5 [l =

if H(x) is identified as

H(x) = w(a’,x) (11-20)
and if ﬂHllz < @ whenever a'eA_ .

(o]
(a)

Hence, for A operating on G considered as a function of ¢, we

have
(« o) f
A ° [alo,a Iao)]= y m(at,x) [To(x) - g(ao)] ch-.o(X)
= gla') - gla)) ; a'ed (1I1-21)
[o]
Now suppose for the moment that A is composed of discrete points
{o; 5 1=0,1,...,n} (n may be infinite). Also suppose that g(a) on A
can be expressed as a linear cambination of the functions G(o,a’ [ao)
considered as functions of a' for a'eA, . That is, suppose there
o
exists some set of real numbers {a.} such that for {ai}eA
n

gle,) - gla) = JZB ay0log.ayla) 5 folen, (11-22)
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. (The set {ai} may be found by inverting the (n + 1) x (n + 1) matrix

VR

of elements[G(ai,aj|ao) 3 1,J =0,1,...,n] ). Then

—rr -

a)
fo® = & L] = 2 L - (o] - EaA RAORAS

= Z a, [g(a ) - g(a )](II—ZB)

Jj=o
Equation (II-23) provides us with an exact expression for the Barankin
bound when the parameter space is camosed of a demmmereble set of

points.

We can verify that the estimator

$(x) =32=(:) amlo %) 3 {aj}eAuo (1I-21)

is unbiased for h(a) when the {ai} satisfy (II-22), since for a el

fo(X;ai)p(X;aj)
ﬁ(x)dP ) —E i s

TR o2 NI

j=o
n
ZajG(ai,ajlao) = gloy) - gla,) ; {o;}er  (II-25)
J=o

Lo a2rend Ay

Also,

Lttt g S

1%

~
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|
| 142 = :
! i Id)(x-)l = JZ__.C:) boajakn(uj,X)ﬂ(ak,x)p(x,ao)dx 1
: é
n n n’
: = 2, a, Y aGle, ~|a)=2a[g(a)
i §26 R T £ Byl
- gle)f = Jb|I? (1I-26) :
o'l T Wo
- Hence, by the uniqueness property of the Barankin estimator
. ! :
3 * n
. To(x) = ¢o(x} + g(qo) = JZ:c:) aj'n(aj,x) + g(ao) (I1-27)
i So far we have shown how to calculate the Barankin bound and the
Barankin estﬁﬂﬁ@r‘wheh A is camosed of a countable set of points.
i We now. want to gereralize these results to the case when A is an in-
terval o ‘”t-ijé redl 1ine. Loosely speaking, what is needed is a
I ] fﬁgz'riagezxtétisn={fcmg(‘a) on A, similar to the expression in (II-22); ;
¢ -
' - : ()
50" that the linear functional A © operating on g(a) can be expressed
) ,
i In Yerims of A " .operating on G(u,a lao) considered as a function of {
—@3 First we present some preliminaries.
z i Suppose ‘that £.(a) is any function defined on A which belongs to
3 ¥. Swpose that for every i there is some H (x) with i[Hilz < @ such f
j - thah viith
i L ;
; | , . fﬁi,(’_o;) = f}li(x)dPa(x) ; oeA (I1-28)
e ' ' S
E L !
i 1
- A oo i
S
. /{ . ]
§ o SR —_—
A-%[(_.hﬂ_4r_fA_,....‘___A__M__..,,;....,.‘.,.u.Awms»-g—ﬂ—;w»-—*-~—<—~'~_1*t-:A~'~:"‘?‘:‘"‘:r“":"‘:: telnsihnsing ety ity e é
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!
3 _the quantities *
3 £ (@) = n £, (a) (11-29) ;
i ‘ﬂ
H,(x) = 1im H,(x) (I1-30)
30

exist and 1im IHi - Hmuz = 0 (That is, H, converges in mean to H_).
i

E Qe L

Then,
{c) (a)
<A°f—limA°f|= Jime(x)-()
| R ]| - [ frco - ]
) [Hm(x) - Hi(x):| @ (x) <||¢0u2 * lim [, - ngz =0 (II-31)
o i
Hence, under the conditions stated above
(o) (a)
A %lumf | =1mA O|f (II-32)
ERRDP

Consider now any function or generalized function, di, on Au
(o]

such that both integrals fﬂ(a,x) f m(a! ,x)dA(a')dPa (x),
X A e
a
o

f G(a,af Iao)dx(a') exist and are equal for all acA. Suppose, cor—
A

[+4
o

[o]
responding to {II-22), we can find such a dA, say dA, for which
o, .
o - gla) = fotwarla)alar) 5 Yaea (11-33)
A

a
o}

S e e e i . ——————
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_ That is, g(a) - g(ao) has the representation

[
gle) - gla) =fI f n(a',x)d?.(a') } @ (x) (1I-34)
X Aa
[o]
Identifying [ w(a? ,x)dﬁ(rx') with H(x) in (II-12), we see that if
A
o

[}

(a)
" fﬂ(a',x)dg(a')lz < @, then [g(a) - g(ao)] eF, and A ° [g] is
A

a
(o]

wiiquely defined. Therefore,

(x) (o)
ol = A oLl =1 ©[g - &(a]

= flzfn(a',X)di(a') -[To(x) - t.z,(cto)]dPQl (x)
(o]

X H

%
= [ S0 - o], codkan
A X )
(o]

-/ [a6e") - ate)]eften) (11-35)

o]
o

The Barankin estimator in this case becomes

1,00 = [ 7(e,xdk(e) + gla) (11-36)
A

o
(o}
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Furthermore, in view of (II-32), if we have an infinite sequence
[o]
{gi(a)} converging to g(a) YacA and a concamitant sequence {dA i}
satisfying (II-33) and such that for some dg,:l:im f ﬂ(u,x)dii(a)
A

h & 2]

[+
(o]

- f ﬁ(a,x)dk(a)uz = 0, then (IT-35) and (II-36} remzin valid.

A

a
o]

While it is admitted that in many cases we cannot hope to find a
closed form solution for dX satisfying (II-33), two facts are of
interest.

First, as has been mentioned, the use of any admissible A will
furnish a lower bound for [|¢)° via (II-11) without the lub operation.
In fact, to this end we need not restrict X to be a signed neasure.
That is, if &\ is any function or gerneralized function for which

[frena@eoe, @ = [ o, Hale = foae),
XA ° AX © A

then (II-10) still holds. In particular, if h(a) and w(a,x) are such

that dA(a) = 8'(c - & )da' is admissible, then with o taken as the

true value of o we obtain the C-R bcund for unbiased estimates of g(a).

+Me notation 6'(.) denotes the derivative of the Dirac distributioen.

See Reference [37].
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Secondly, 1f the parameter space is not composed of a countable
set of polnts one could perform a dissection of the parameter space
4nto say, o points and cast the problem info the discrete form. Then
one may solve fox; the sultable constants {ai}, in (II-22). By taking

n large enough it may be possible to obtain a good approximation to

the xes,ults.f'or the continuous parameter problem. The Barankin esti-

mator which results from this procedure will be urbiased for every
point in the dissection if a solution to (II-22) exists.

4

In arriving at the Barankin estimator for g(a) it has been noted

" that in general_To(x) will depend explicitly on a. Such an estimator

is termed "locally best" at a = a . If only a locally best unbiased
estimator for g(a) exists, it is not legitimate to .choose a to cor-

respond ‘to thé true value of « for the purpose of constructing the

~ Barankin est;imator, because then the Barankin estimator will explicitly

Gdepend on the parameter to be estimated. In this case, one must accept
~s'arethiﬁg less than an estimate which is best in the mean square sensé
about the true parameter value. In lieu of choosing a different
approach entirely, it might be satisfactory to use the Barankin theory
to construct an estimate which is best in the mean square sense about
some arbitrarily chosen point as which is not necessarily the true

value of o, (Implicitly we are saying that the selection of a is made

. . ok

o o o

oy iae e

“
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_ fram data which is statistically indépendent of the dzta to. be used in
constructing the Barankin estimator.) In any case, we will obtain an
unbiased estimate of g(&) in this fashion if one exists.

We might then hope that the Bararnkin estimator, T

', which 1s best

about a does not differ widely from the estimator, Tl’ which would
have been obtained had o, been chosen as the true value of a. As a
measure of the sensitivity of TO to the choice of a, we could.use
.12
- E{To - 1}

)2 ' (11-37)
1.

S

where the expectation is taken over the distribution corresponding to
ar, the true value of a.
Then,
2 2
sty - 0t [y - o]
S« 5 + >
(ao - al) (ao - 0‘1)

(11-38)

In principle, once dgo and d)?lz (or their counterparts for the discrete

parameter space) are found satisfying

Jotaarla)al (@) = (o) - ga,) 5 o (11-39)

by

ao

fG(a,a'Ial)dgl(a') = g(a) - g(al) 3 Xoeh (T1-h0)
. A“l

et it
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In s gppendiz we present ths actuel earputsr progrars used
In the simmiztion of Ex=xples 1 ad 2.

Te first Msting pertzins to Exxple 1, Case 3. o cotain the
cther czses for Exaple 1, the welnes of B and W3 (wrich correspond
%Boaﬁao)m&azged.

ihe secand 1isting periains fo the simlztien of Sxavplie 2, Case
I, where oniy the cemten-freqgency eovartiancs peraeier was ireated as
LRHONOWR.

2= Indicated on the nofe foz the tidrd listing gresented, these
statecents angropriately oodify the mrogren for Bxarple 2, Case 1in

arier to similate Franple 2, Case 2.
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P9 EXEL FORTR=M
STMULAT UM USING LEAST-SOCIRES ESTIMATE

INPLICIT REALsL (M)
Kl=NU. Or KONTE-C2RLD TRIZLS
n2=hl, U TIME SAMPLES
TIaSERMATIUN: LENGTM
293K W IMH REGRESS I00¢ PARANC IER
BOSUNSRORN COYARIANCE PARARETER
Gl=VECTO CF KXUwN REGRESSION FrneTlON WALUES
R=D2TL w=LILR
U=VECTU® OF IXNDEF. GaUSS. R.V'S
=VECTOR OF CORRELATED €2USS. H.%.°'S

Aot ot o

wRITZ16,10)
10 FORMETIIND® SIMULATION FUR LoS. ESTIMATOR wF ALPHL'//)

THE PROGRAM WILL BE LIMITED TU & maX UF TEx TInge SameLES

ceee

L0 XRANDG

DINEAS IO UL10),E(15).61(10),R(10),PHICI10,10)
ARENSIDN REUHITI ), 202TRE1), 2HAT2(1)
ECUSLE PRECISTION T,u0,EHD,H

an

IAPUT DRERNTION
n1=1000

$:2=20

F=l.0

20=.01

2p=2.0

KREADG=1
EZAMD=112132212128

C STME AUXILLIARY CUNST2XTS
Pi=3.1415926
uG=100*P1
FO=w0/(2%P1)
DELTAST/ 12-1)

WRITE(6H: 15001 JM2,T,80,20,F0
15 FORMAT(1HO,® N1=",16," H2="914," T="sFd.1:" BU=',F4.2y
1? 20=",F4.24s* FO=*,F8.5," CP5'//)

C FURNING THS VECTUR G1
U 40 K=1.M2
=K-1
40 GlIX)=CUS(%OSDELTA*L)

(Rl

PRE-CONPUTATIONS FUR L.S. ESTIMATE GF AO
Yi=0.0
DU 55 1=1,N2
55 Y1=61(1)»%2+Y1
T1=Y1

THE VARIAHCE OF AHAT1 MAY BE CALCULATED AHALYTICALLY A%D
WILL BE CORPARED WITH THE SIRNULATION RESULTS

FIRST HE CALCULATE THE MINIMUKM vVaRIAKCE FUR
ESTIMATiUN OF AQO~--VAM]IK

[y aN NN oyl

—

S Ay o ey T =



2,

0y
Blhmrple = 1 whe

Ny

[aN ol o

[aNaNal

&0

160

S0

20

30

S50

65

FHUsUEXPI-BO*IELINY

1=l i1)sa2)2 (]l .~FHOYE2)
oY & I=2.M2

=62 (1) -RP9G11i-1)03%2+2
VIRIN= 1. -REUs*23/,2

SETTING UP TS TRUTZ CUV. MAIRIX,PHIG
GO 198 I=1.N2

DU 100 =102

PHIOLE s J ) =RUD== (9]}

P10t 13=PHIDI] 5 3)

cumT INUE

CRLCUL AT IXG THE VARIANIE UF THE L.S. ESTINaTE

u=0.0

U9 SO I=1 N2

08 S8 J=1.,M2
w=Gl{I13PHIO(],J)=Gl{J)+W
CUMTJAUE

YLS3W/ (T1e32)

MENTE-CAXLU SIMULAT IO

=LSIRT(Y . —~RHE»*2)
X1=0.0
X3=0.0
Y2=0,0
Y59x0.0
Y16=0.C
Y:1=0.0
k=1
DU 503 K5=1,.M]

GENERAT ING INDEP. GAUSS. R.V.'S
LU 20 L=1,10

UL L)=R2NUGL |RZKD)

CONTINIE

GEHERATING ThE DESIRED SAMPLED RAKUOHK PRUCESS
E(1)=U11)

06 30 Kx=2.10

E(Ki=BsUIK)+RHOGSciR=]1"

CONTNOE

GENERATING THE DATA VECTUR
OV 50 I=1,M2
RII}=20%0LILY)+E(]}

CONMT IKUE

THE L.S. ESTIMATE-—--AHAT}
¥2=0.0

0O 65 1=1,H2
Y2=G1(})=sRE1)+YZ

CUNT IKNULE

AHATY (M}=Y2/11

Lo et dia g b b e 4 sadaied. L,
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SRR JULTER'] FPIL] TUB TSRS W K TIDIT DR YRy DI

PP .

s o AR

i



o

™

25

Py

21v

220

230

240

264

S06

e

-

EST 12T 3P0 I RHU

Y3=G.V

A3 TO =202
Y3=IROII-ARATLLI=LIC TN ISUIREL -] J-L 2T L (K)o {110 )+Y3
Cipel HICE

Y&=0.0

Je=i2-]

U 75 I=1.1%

Y&= (L) -2HATINI=GL (1) )en2evs
CUNT INUE

PHUHATIN)I=Y3I/YS

THE REVISED ESTINATE-——2HAT2

¥5=REl1=H1 (103 () o ~RHIHLT (M) *22)

Iy 208 1=2.82

YS={RE 1 }-RECHET (H)SR{1-1 Y IS(OLU T )i nTIRDI=L1IE i1 D 3+YD

Y5={51{11=02)= (] .~RHUHAT IN)»52)

0 210 1=2,4%2

Y6=(GL{ J)-RHUHAT M) =51 (1 -1 ) )932+Y6
AHIT2(N)=YS5/YS

KE-ESTINATION UF RBU

X6=0.0

PO 220 §=2.,N°

Xe={REF2~2B2 2{HIaGHI}D)S(RI]I-1D-CHAT2IH)=6R]-22)eXo
CUNT IRV

X5=0.9

08 230 1=1,1x

X5=(RI11-apsT2(3)=6L (12} ==2+25

cunTInNGE

KHUEAT (ME=XS2X5

THE ITERATEL ESTIMATUR UF ALPHA—-AHAT]T
X6=Ki2IFPC1E2325 ) . ~RHECHAT INY>52)

Uiz 254G §{72.RZ

X&) -RilWATINI®RITI-1) 1> (6] 3-REBHAT(N)=L1LI-22)+X6
XT={oiiisei il —griAT (N)35C )

vy 250 1=2,.H2

Xl L - UHAT (M) LI -2 3 )33 2+XT7

AHATIT=Z06/27

SaxPLE KELNS
YT=YT+HiSIHAT {X4)
HE=YRAAmATY (12
TO=YGSsAKATZ [%)
baxn-SCUARCI ERARUR
NITEAHATLENI-AG)3324X])
V2= {AHATZEN)-AD)3R24X2
X3= ERUODHAT (H)-RHU) *2+X3
FEaf AKWY ¥3F UF ITERATED ESTIMATE
Y1G=¥10+&44HAT 1T
Yid=Yil+ (ZHAT IT-AD)®=2
CUxTINUE

ERuap=Y7/ul

HRAl=YE/ KL

tAZ=YG/H1

MSEAL=X1/H]
MSEAZ=X2/M1

at

1 dhy - P




7

162
MSERKO=X3/M2
r21T=Y10/K1
KHSER1T=Y11/K]
PERF=VARIN/NMSEALT

HRITE(6,7)
FURPATI1IND." 20 M2l naz VLS nSeal HSEAZ?®

1* VAMIN MRHY MSERHU nAIlT  nBSEAIT PERF3,/7/7)

12

16

*»

20

ra g
/¢t

WRITE(65:32)80,M5) (HA2, VLS JNSEAY JHSEAZ e YAR] My KRHU s KSERHD,
12 FT . MSEAIT . PERF

FURMATIIH 2F6.232X32(F5.432X)3F6.35:2Xe2{F7.422X):F7.5:3X,
1F0.632XsFB o8 e84X 3F0.522XsFH 544X F8.6)

WRITE(6,14) IRAKD

FURKMAT(IHO,® JRAKD= *,]10)

EMD

SUSROIT INE FUR GEMERATING GAUSSIANM RANDUR VRIAUBLES
FUNC T IO RAMUGLIRAKD)

6lr TO (142), KRANDG

Ul=RAND2{ IRAND)

U2=RARUN( [ R2MD)

XMAG=SURI(-2.25LU{UL])

X1=XMAG*(0S5{6.283 1842U2)

RaKLG=X2

KRANUG=2

60 TU 20

X2=XHAG*> ] %1 6.2831852U2)

RARDG=X2

KRA%5DG6=1

RETURM

EkiL

EXD UF Ju8

n\r; A L ERSaen stk 3K LD Rl LA B AN VU P £ ew e st AR

oty s ink
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IOV ACOORANMIeON

shat

15

40

59

Nes XEC  FORTRXAIBCG:
IEPLICIT Real=s4 {m)

CALL CLUCK(XRKS

KRN=KER

SIRVLATIAG THE CASk FUR HeTEABDYH=D NBISL

sl =x{). UF MUNTE~CAPLY TAlALS

H2zkU, OF TIME SAXPLES

T=OSSERVAT IR LENGTH

ABRYNKKURN REGRESS Jlue PRAMETER
CHanUISE BARIYINT® VaRARETER

HU=RPISE CERTER FREQUENCY PARAMETER
EOREGTESSIUN FURCYIHN FREMIENCY (XMUNWN)
Sl=XH0uN FEGRESSION VECTIR

fRaB2TE VECTUR

U=VElTIR B THUS?. GAUSS, F.¥.F3
V23dUXILIAKY YECTU% LT [HUEFP. SAUSS, R.LY.'S
E=VELTUR {IF CURKLLATED G3USS. R.V.'S

CORMOMN KRAMDG

DIREMSTUN ULICH,EL1DE G320} RI2DE¥12)
BIREMS IO PHICTIG; 101 POIMET 0203, (28)+L2(10)
BIUULE PRICISIUN ¥RIG.DPHIHAY B0,%7 24803880, CC y%0,H1,£3,C4,
2C0,51,C2,L5

UUUYLE PRECISION Ris?

IHPUT INFORMATION

Xi=1GCD

NZ=10 -

T=1.0

BU=.01

A9=2.0

NG=2.0

KRaNDG=1

17=2

InarD=33318112118

PI=3,1415926

HWCx3ap}

FC=uC/{2%P1}

FO=HG/42%P1 )

VELT2=T/{N2~1)

HRITE(69151KY sH2 4 T,H2;40,50,FC
FORRXAT(1KD, Nl=v,]5,? R2=7 534, T=t,F5.14% BO2?,Fs,2,
1' AG=',F4,2,% FO=?,F5.3,8 CPS FL=V,F5.3.% CPS'7/)

TURKING THE VECTUR 51
D0 %0 Xel.N2

L=K-1

G1EK)=CUS {HO=DELT AL )

PRE-CGRPUTATIONS FUR L,S. ESTiMATE
¥Y1=0.0

DU 55 I=1,N2

Yistl(]}®s24+v]

Ti=Y}

SETTIRG 4P THE TRUL COVARIANCE MATRIX
DD 100 1= ,M2
DU 100 J=],N2

iie

hadd + 2t g

v

Yy

i Sl S s o ¢

e ' ORI 478 5 WD

AL

Ad
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1}

PeuAndts,

il LM A,

PPPRER RN F AP

i



[nE ek ol e

Ao Ao eo

QO Gy

1uo

90

95>

PHIOU] s J)=UDEXP(-B0SDELTIA®(J- 1) )sUCUSIHCSUELTA®(J-1})
PHIVI{J,1)=PHIO(],J))
CUNT IKUE

CALCULATING THE VARIANCE UF THE L.S. ESTIMATE
H=0.0

LG Y0 I=1.,N2

D0 90 J=1,N2

W=GLIT)SPHIO(T:3)*GL(J)+W

Cint INUE

VLS=K/(T1%%2)

CALCULATING REOQUIRED CONSTANTS TU GENERATE THE DZSIRED
TIrt SERIES

AAU=PHIO(1,2)}>(1.-DEXP(-25B0=ULELTA))
BBOU=1.-UEXP(-42HOsVELTA)
CC=(8BO+USORT (BBO®32-%3AA0%%2)) /2.
CO=USORT({1-CC*=2)

HO=LSURT (CC)

C3=h0=ALU/CC

C4=DEXP{-25HOSUELTA)
C5=23PHIU(1.2)

Hi=H0=(5-C3
C1=(PHIO(1.:2)-HOSHL1)/CO
C2=1.-(HUSZ+H]1®¥2])-C1l3=2
CZ=DSURTIC2)

FOX THE KREST OF THE PROGRAM WE NEED THE MATHIX INVEKRSE
UF PHIO--NOT PHIO.

1nl

THE FOLLUMING MATRIX INVERSIUN KEPLACES PHIU WITH ITS INVERSE,

CALL DPINMVIPHIONZ,TESTLUETER,LY:12,N2)

WE Kt CALCULATE THE MINIMUM PUSSIBLE YARIAKRCE
FUR ESTIMATING Ap-—~-VANIN

W1=0.0

D0 95 I=1.N2

D0 95 J=1,H2
H1=61(1)3PHIO(1.J)261(J)+NH]
CONTINUE

VAMIN=1./41

MONTE CAKLU SIMULATIUN

X1=0.0
X2=0.0
X3=0.0
Y7=0.0
¥8=0.0
¥9=0.0

DO 500 N5=1,N1
GENERATING THE SETS UF [NULP. GAUSS. R.V.'S

v0 20 L=1,410
YIL)=RANLG{IRAND)
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[pRalaNalsl

(o kn)

21

3v

50

55

73

70

360

315

CUNT INUE

LU 21 L=1+2
VILI=RARUGI IRAND)
CONT JNUE

GENERATING THE DESIRED SAMPLED R.P.
E(1)=HO=Ut1l)+CO*V(1)
E(2)=H02U(2)+H1sU(]1)+C1sV(1)+L2%V(2)

DU 30 KX=3,N2

E(K)=C53t (K-1)-C4*E (K-2)+HO®U(K])-(3=U(K~-1]}
CUNT INUE

GENERATING THE DATA VECTUR
$0 50 J=]1.N2
RIEI=A0SLLICY)+EL])
CUTINUE

THE L.S. ESTIMATE----2HATI]
YZ=0.0

B0 55 I=1.N2
¥2=61{}=RI])+Y2

CINTINIE

AHAT1=Y2/11

e3TIBATIUN GF THE CUVARIANCE MATKIX

THIS PRUGEAM TREATS BANUKIDTH AS A KNUWN PARAMETER
HE ESTimaTE PHIO(1,2) AND THEN THETA=NCHDELTA
AMAT=AHAT]

Y3=0,0

L 70 1=2:N2
Y3=¢R(])-AHAT2GLE ) )= (R{]~1)-2HAT=GL1(1-1}}+Y3
CUNTINUE

Y4=20.0

IM=n2-3%

20 795 I=1.1R

Y2=iR1 1 1~2RAT*GL{{i) 1 9v2e¥s

CONT TG

PRIAST{2,2)=Y3/Y4

THLTAZARCOS ISHGL SYHINATIL 321 ) 2SHEL (RExFiaerkiiaii;

SETTING UF THE ESTISATED COVARIALCE MATHIX

LU 300 I=1N2

DY 390 o-1.,N2

PHIARTE Y, )2DEXF (~BU2DELTASI -] ) ) COS{THETASLI-1 1}
PMIHATII i3=PHInaTEL U

CONT INUE

IHE REVISED ESTIMATE-~~~-AnATZ CR AHATIT
CALL LPINVIPHIHAT HZ TELTJUETER LY L 2.W2)
H2%{l .U

Dir 310 Isi.h2

DG 320 J=1 N2
H2=CLi1I*PHIRAT (I e 33261 {0 )02

CunT [HUL

#3x0,.0

U 515 i=1.H2

00 315 J=14N2
W3eGl{11eDHHATI 1 ;3)SR{J j443

GUNTINE

112
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(gXa)

63

64

5C0
1500

7 FURMAT{1HO,*' AO NAY MA2 VLS

AHAT=W3/H2
IF(1T-1) 52,6364
AHAT2=AHAT

1T=2

Gu TO 73
AHAT I T=AHAT

1T=1

PERFORMANCE CALCULATIUNS

SAMPLE MEANS
YT=YT+AHAT]
Y8=Y8+AHAT2
Y9=Y9+AHATIT

MEAN-SQUARED ERRUR
X1={AHAT]1-AQ}**2+X1
X2=(AHAT2~-A0) *32+X2
X3={AHATIT-AQ)*%2+X3
CALL CLOCK(IKLL}
KKM=KLL
IF(IABSIKKH-KKN)} .GE. 25200) GU TO 1500
CONT INUE

CONTINUE

MAL=YT/NS

HAZ2=YB/NS

MAIT=YQ/NS
HSEAL1=X1/N5
MSEA2=X2/N5
MSEAIT=X3/N)
PERF=VAMIN/MSEAIT
YRITE(6,7)

113

MSEAl MSEA2?

1t VAR IN HALT HSEALT PERFt,//)

HRIIE(E,120140,H41 )MA2 VLS yMSEAL JHSEA2, VARIN,MAI T MSEALT,

1PERF

12 FORMATIIH 4F6.142X32(F64492X}1F6e342X42(FT.442X):FT7.4,4X,

LF6e%42X;F65.444X4FB.6)
SRiTEL6+120G) NS

1100 FOKSAT{IH ,* ACTUAL NO. OF ITzRATIUNS=

LKRITE(&.16) 1RAND

14 FURLATILIRO' fRaNG= 1,110)

/%
/&

END

END OF Ju
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1 7MAINGA EXEC FURTRAN
C HERE BANUWIUTH AND CENIER-FREQUENRCY ARE KREGARDED AS UNKNUWN
C WE ESTIMATE PHICGIL,2) AND  PHIO(1,3) AND THEN
C THETA=WC®DELTA  AND  EXP(-BO=DELTA)=RHU
AHAT=AHAT] i
73 Y3=000 !
Y4=x0.0 !
Yb=0.o

LD 70 1=2,N2
Y3={R{])-AHATAG (1) )=(R{}~1)-AHATIG1(1=1}34Y3
Y5= (R(1)-AHAT=GL (1) )=%2+Y5
70 CONTINUE
DU 71 1=34N2
Yoa=(R{})=-AHAT=*GI(I)I=(R(]1-2)~-AHAT®GL(1-2})+Y4
71 CONTINUE
PHIHAT(1,2)=Y3/Y5
PHIHAT{143)=Y4/{Y5~-(R(2)-AHAT®LL{2) }5%2)
THETA=ATAN(SRGL (UDSOURT(DABS (1 . =PHIHAT{1,3)/PHIBAT{1,2)%%2))})
RHU=PHIHAT(1,2)/CUS(THETA}

T PO A W S S e M B Y e A ST e et o s parmet K pvomrmanase sty + &

(R

J C SEITING UP THE ESTIMATED CUVARIANCE MATRIX '
LU 300 I=1,N2 3

; VU 300 J=1,N2 i
i PHIBAT (14 J)=(RHUS* (J=1) }3CUS(THETAR(J~1) ) i
\ PRIHAT(J, [}=PHIHAT(],J) H
i 300 CUNTINUE

YAl
: /& END UF JOH

T

; Note:

These statements replace statements 73 through 300 in the
previous listing when it is desired to simulate Case 2 of
Example 2.
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- A number of problems that arise in radar and sonar applications ca; be regarded
as parameter estimation problems, in which the desired signal, f(t,g.ﬁ), is imbedded
in non-white, Gaussian noise, It is desired to estimate the unknown, nonrandom
., parameter vecter, 8, from observations (continuous or sampled) of the received noisy
i signal over a finite time interval [0, T]. Here f(t, &) is a known nonstochastic function,
and we shall consider the case when £(t,q) is linear in @. In this case, o is referred
to as a linear regression vector ''(U)* L .

We shall investigate the variance u. the Least-Square (LS) estimator and of the
so-called Generalized-Least-Squares (GLS) estimator for ga. Both are unbiased
estimators for a., !"(U)'"

When the noise covariance function is completely known one may construct a
minimum variance unbiased estimator (MVUE) for a, and this estimator is a member
of the class of GLS estimators. '(U)"

Our interest is in the case when the noise covariance is not completely known,
but may be regarded as a known function of a finite number of unknown, nonrandom .
parameters, 8. "(U)"

It is shown that when B contains any covariance parameters other than the noise
variance, there exists no MVUE for a. '(U") .
However, we shall exhibit a class of problems for which the MVUE for Q& has a
variance which is orders of magnitude smaller than that of the LS estimator, In such
a case it is of interest to find an estimator which makes use of whatever covariance.
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information is available in an attempt to approach the performance of the MVUE, "(U)'§
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. Item I3 Abstract (con't)

It is shown that we can significantly improve upon the LS estimator by employing

- a bootstrapping procedure to estimate a. In some cases the boots.rapped estimate

“ of @ can be shown to be unbiased. In any case, it is demonstrated via computer

B simulation that the bootstrapped estimate of a4 is capable of reducing the variance
of the LS estimate by orders of magnitude. In fact, the mean squared estimation
“error using the bootstrapped estimator for & may be within a few percent of the

variance of the MVUE, i.e., the variance the MVUE would have if 8 were known

‘;a priori. '"((U)"

The bootstrapping procedure consists of using the LS estimate of & to provide

‘an initial estimate of the regressmn vector from which an initial estimate of the

uanknown covariance parameters is constructed. ''(U)"
Two procedures are outlined to accomplish the estimation of 8. The first
aporoach is based upon an application of the theory of locally best unbiased estimation.

'The second approach is herein termed the "inverse-covariance-function' technique.
~Because of its simplicity, the latter approach is employed in the simulations. "y

Regardless of the manner in which the covariance parameters are estimated,

‘these estimates are used to construct the GLS estimator for @a. This is the first

‘iteration of the bootst:f':.pping procedure, "(U)"

The GLS estimate of % is then used to re-estimate the unknown covariance

parameters, and then to re-estimate the regression parameters. "'(U)"

The process uses oniy the one available record of data, and may be repeated
ad nauseam. However, dramatic results were obtained after only two iterations

of the bootstrapping procedure, '"(U)"
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